首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
病灶精确分割对患者病情评估和治疗方案制定有重要意义,由于医学图像中病灶与周围组织的对比度低,同一疾病病灶边缘和形状存在很大差异,从而增加了分割难度。U-Net是近些年深度学习研究中的热点,为医生提供了一致性的量化病灶方法,一定程度上提高了分割性能,广泛应用于医学图像语义分割领域。本文对U-Net网络进行全面综述。阐述U-Net网络的基本结构和工作原理;从编码器个数、多个U-Net级联、与U-Net结合的其他模型以及3D U-Net等方面对U-Net网络模型的改进进行总结;从卷积操作、下采样操作、上采样操作、跳跃连接、模型优化策略和数据增强等方面对U-Net网络结构改进进行总结;从残差思想、密集思想、注意力机制和多机制组合等方面对U-Net的改进机制进行总结;对U-Net网络未来的发展方向进行展望。本文对U-Net网络的原理、结构和模型进行详细总结,对U-Net网络的发展具有一定积极意义。  相似文献   

3.
医学图像分割精度对医师临床诊疗起到关键作用,但由于医学图像的复杂性以及目标区域的多样性,造成现有医学图像分割方法存在边缘区域分割不完整和上下文特征信息利用不充分的问题。为此,提出一种改进U-Net的多级边缘增强(MEE)医学图像分割网络(MDU-Net)模型。首先,在编码器结构中加入提取双层低级特征信息的MEE模块,通过不同扩张率的扩张卷积块获取特征层中丰富的边缘信息。其次,在跳跃连接中嵌入融合相邻层特征信息的细节特征关联(DFA)模块,以获取深层次和多尺度的上下文特征信息。最后,在解码器结构对应特征层中聚合不同模块所提取的特征信息,通过上采样操作得到最终的分割结果。在2个公开数据集上的实验结果表明,与用于医学图像分割的Transformers强编码器(TransUNet)等模型相比,MDU-Net模型能够高效使用医学图像中不同特征层的特征信息,并在边缘区域取得了更好的分割效果。  相似文献   

4.
近年来随着深度学习技术的快速发展,卷积神经网络(CNN)成为语义分割的重要支撑框架,被广泛运用于多种目标检测与分割的任务当中。在医学图像分割任务中,U-Net网络以其优异的分割性能、可拓展性的网络结构等特点成为该领域研究的热点。如今有众多学者从网络的结构等方面对U-Net进行改进以优化网络性能、提升分割准确度。研究通过对相关文献的分析,首先介绍了基于U-Net的经典改进模型;然后阐述了六大U-Net改进机制:注意力机制、inception模块、残差结构、空洞机制、密集连接结构以及集成网络结构;随后介绍了医学图像分割常用评价指标和非结构化改进方案,这些非结构化改进方法包括数据增强、优化器、激活函数和损失函数四个方面;之后列举并分析了在肺结节、视网膜血管、皮肤病和颅内肿瘤新冠肺炎四大医学图像分割领域的改进模型;最后对U-Net网络的未来发展进行展望,为相关研究提供思路。  相似文献   

5.
面向医学图像分割的超像素U-Net网络设计   总被引:1,自引:0,他引:1  
近年来,超像素在医学图像处理领域的应用愈加广泛,现有的方法取得了较好的效果,如LAW, SLIC等.然而,这些方法在处理医学图像得到超像素时,位于组织边缘像素点的划分仍存在类别模糊问题.为此,提出一种基于U-Net网络的超像素分割方法.首先,通过双边滤波模型过滤外部噪声,增强超像素信息;然后,结合U-Net卷积网络学习图像特征.该方法为U-Net网络中每个特征尺度的卷积层后嵌入一个规范层,用于增强网络对参数的敏感性.实验结果表明,该方法有效提高了医学图像超像素的分割精度,与groundtruth相比,其改善了超像素边缘分类的准确性,优化了超像素分割结果,在精确度、召回率、F-measure和分割速度等性能指标上均取得了更好的效果.  相似文献   

6.
图像分割技术的主要对象为自然图像和医学图像,相对于自然图像而言,医学图像的语义分割通常需要较高的精度以进行下一步的临床分析、诊断和规划治疗。目前用于医学图像语义分割的深度神经网络模型由于仅考虑位置的平移不变性,存在局部感受野较小、无法表达长范围依赖关系的问题。设计一种面向医学图像的分割模型,基于内卷U-Net网络,使用内卷操作代替传统的卷积操作,并将内卷结构作为基本的网络结构,提升模型对医学图像局部特征的学习能力。在模型的瓶颈层引入注意力机制模块来学习图像长范围的依赖关系,以提高医学图像语义分割的精度。在肺部CT数据集上的实验结果表明,该模型的Dice系数为0.998,较基于卷积神经网络的分割模型约提高5%,并且大幅缩短Hausdorff距离,具有更高的分割准确度以及较好的稳健性。  相似文献   

7.
视网膜血管的形态和结构一直是高血压、冠心病、糖尿病等疾病的重要诊断指标之一,其检测和分割具有十分重要的意义。为了解决视网膜血管分割中,血管末梢缺失和细小血管断裂的问题,提出了一种基于U-Net改进模型的多尺度分割方法,通过在编码阶段和解码阶段之间采用增加卷积块的方式来保持对不同尺度下的特征提取,同时对增加的卷积块采用密集连接的方式解决由于网络加深带来的浅层特征缺失和梯度消失问题,从而增强模型的特征提取能力并提高分割性能。此外,采用Dice损失函数解决数据集中正负样本不均衡的问题。实验采用CHASE_DB1和DRIVE两个数据集进行训练和测试,通过与U-net、Residual U-net、Ladder-Net以及R2U-Net的对比表明,由于保留了多尺度的细节信息,该方法取得了更好的分割效果。实验证明,该方法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。  相似文献   

8.
为了准确诊断滑膜炎患者病情,医生主要依靠手工标注和勾画的方法来提取磁共振图像(MRI)中的滑膜增生区域,该方法耗时长、效率低,具有一定的主观性且图像信息利用率低。针对这一问题,提出了一种新的关节滑膜分割算法,即2D ResU-net分割算法。首先,将残差网络(ResNet)中的两层结构的残差块融入到U-Net中,构建2D ResU-net;然后,将样本数据集分为训练集和测试集,而后对训练集进行数据增广;最后,将增广后的所有训练样本用于网络模型的训练。为了检测模型的分割效果,选取测试集中含滑膜炎的断层图像进行分割测试,最终平均分割精度指标可达到:Dice相似系数(DSC)69.98%,交并比(IOU)指标79.90%,体积重叠误差(VOE)系数12.11%。与U-Net算法相比,2D ResU-net算法的DSC系数提升了10.72%,IOU指标升高了4.24%,VOE系数降低了11.57%。实验结果表明,该算法对于MRI图像中的滑膜增生区域可以实现较好的分割效果,能够辅助医生对病情做出及时诊断。  相似文献   

9.
骨关节疾病自古以来是人类最高发的疾病之一, 随着老龄化的不断加快, 这类疾病日趋广泛, 关节外科医师面临着巨大挑战. 对人体关节的图像分割方法研究可以帮助医生进行临床诊断和治疗, 然而, 由于存在噪声、模糊、对比度低等问题, 医学图像的特征提取比普通图像更具挑战性, 而且目前大多数分割模型在编码器和解码器之间都采用了普通的跳跃连接, 没有注重解决跳跃连接过程中的信息间隙和损失问题. 为解决这些问题, 提出一种基于DH-Swin Unet的医学图像分割算法, 该模型在Swin-Unet模型的基础上, 在跳跃连接中引入密集连接的Swin Transformer块, 并加入混合注意力机制, 来强化网络的特征信息传递. 通过在某三甲医院提供的真实临床数据对所提方法的性能进行评价, 结果表明, 所提出的方法取得了DSC为86.79%、HD为32.05 mm的分割结果, 在关节疾病的临床诊断中具有一定的实用价值.  相似文献   

10.
甲状腺超声图像广泛应用于甲状腺相关疾病的诊断。针对甲状腺超声图像对比度低、边缘模糊以及散斑噪声严重等问题,提出一种基于多阶U-Net的深度卷积网络模型,用于实现甲状腺腺体与甲状腺结节的自动分割。该模型以U-Net为基本网络框架,通过不断进阶的特征融合,以实现图像边缘的信息提取。同时,在模型中使用了一种多尺度残差卷积模块以进一步提升分割精度。对比实验结果表明,该模型相较于其他方法能够获得更好的分割结果,具有一定的临床应用价值。  相似文献   

11.
深度学习在医学影像分割领域得到广泛应用,其中,2015年提出的U-Net因其分割小目标效果较好、结构具有可扩展性,自提出以来受到广泛关注.近年来,随着医学图像割性能要求的提升,众多学者针对U-Net结构也在不断地改进和扩展,比如编解码器的改进、外接特征金字塔等.通过对基于U-Net结构改进的医学影像分割技术,从面向性能...  相似文献   

12.
新型冠状病毒肺炎(COVID-19)大流行疾病正在全球范围内蔓延。计算机断层扫描(CT)影像技术,在抗击全球 COVID-19 的斗争中起着至关重要的作用,诊断新冠肺炎时,如果能够从CT图像中自动准确分割出新冠肺炎病灶区域,将有助于医生进行更准确和快速的诊断。针对新冠肺炎病灶分割问题,提出基于U-Net改进模型的自动分割方法。在编码器中运用了在 ImageNet 上预训练好的 EfficientNet-B0网络,对有效信息进行特征提取。在解码器中将传统的上采样操作换成DUpsampling结构,以此来充分获取病灶边缘的细节特征信息,最后通过模型快照的集成提高分割的精度。在公开数据集上的实验结果表明,所提算法的准确率、召回率和Dice系数分别为84.24%、80.43%和85.12%,与其他的语义分割算法相比,该方法能有效分割新冠肺炎病灶区域,具有良好的分割性能。  相似文献   

13.
为了对CT图像中的肺结节进行准确地分割,提出了一种基于改进的U-Net网络的肺结节分割方法。该方法通过引入密集连接,加强网络对特征的传递与利用,并且可以避免梯度消失的问题,同时采用改进的混合损失函数以缓解类不平衡问题。在LIDC-IDRI肺结节公开数据库上的实验结果表明,该方法达到的Dice相似系数值、准确率和召回率分别为84.48%、85.35%和83.81%。与其他分割网络相比,该方法能够准确地分割出肺结节区域,具有良好的分割性能。  相似文献   

14.
改进U-Net的高分辨率遥感图像轻量化分割   总被引:1,自引:0,他引:1  
胡伟  文武  魏敏 《计算机系统应用》2022,31(12):135-146
针对传统图像分割方法分割效率低下,遥感图像特征复杂多样,复杂场景下分割性能受到限制等问题,在基于U-Net网络架构的基础上,提出一种能够较好提取遥感图像特征并兼顾效率的改进U-Net模型.首先,以EfficientNetV2作为U-Net的编码网络,增强特征提取能力,提高训练和推理效率,然后在解码部分使用卷积结构重参数化方法并结合通道注意力机制,几乎不增加推理时间的前提下提升网络性能,最后结合多尺度卷积融合模块,提高网络对不同尺度目标的特征提取能力和更好地结合上下文信息.实验表明,改进的网络在遥感图像分割性能提升的同时分割效率也提高.  相似文献   

15.
视网膜血管分割是医学图像分割中常见的一项任务, 视网膜血管图像有着分割目标小而多的特点, 过去的网络在分割中可以较好地提取粗血管, 但是很容易忽略细血管, 而这部分细血管的提取在一定程度上影响网络的性能, 甚至是诊断的结果. 因此, 为了达到在保证准确提取粗血管的前提下, 提取到更多更连续的细血管的目标, 本文使用对称编解码网络作为基础网络, 使用一种新的卷积模块DR-Conv, 旨在防止过拟合的同时提高网络的学习能力. 同时, 针对最大池化层造成的信息损失问题, 考虑使用小波变换进行图像分解并使用逆小波变换对图像进行恢复, 利用混合损失函数结合不同损失函数的特性以弥补单个损失函数优化能力不足的问题. 为了评估网络的性能, 在3个公共视网膜血管数据集上分别对网络进行了测试, 并与最新方法进行了比较, 实验结果表明本文网络拥有更优的性能.  相似文献   

16.
基于U-Net的高分辨率遥感图像语义分割方法   总被引:1,自引:0,他引:1       下载免费PDF全文
图像分割是遥感解译的重要基础环节,高分辨率遥感图像中包含复杂的地物目标信息,传统分割方法应用受到极大限制,以深度卷积神经网络为代表的分割方法在诸多领域取得了突破进展。针对高分辨遥感图像分割问题,提出一种基于U-Net改进的深度卷积神经网络,实现了端到端的像素级语义分割。对原始数据集做了扩充,对每一类地物目标训练一个二分类模型,随后将各预测子图组合生成最终语义分割图像。采用了集成学习策略来提高分割精度,在“CCF卫星影像的AI分类与识别竞赛”数据集上取得了94%的训练准确率和90%的测试准确率。实验结果表明,该网络在拥有较高分割准确率的同时还具有良好的泛化能力,能够用于实际工程。  相似文献   

17.
医学图像分割及其发展现状   总被引:2,自引:0,他引:2  
医学图像分割是各种医学图像应用的基础,当前的临床辅助诊断、图像引导的外科手术和放射治疗中,医学图像分割技术显示出越来越重要的临床价值.由于医学图像种类繁多,常规影像包括磁共振(MR)成像、计算机断层(CT)成像、正电子发射计算机断层显像(PET)、超声(US)成像等,其中MR成像还可以产生多种不同时间参数序列的图像模态.为此,医学图像分割技术已成为面向不同的影像模态、临床目标、特定解剖学部位的一种独特的应用科学体系.结合现有的国内外研究成果,该文详细地介绍和系统地对比了图像分割方法并进行了分类,最后还对6个国际知名医学成像期刊和会议进行了统计分析,阐述了医学图像分割技术的研究趋势.  相似文献   

18.
传统的医学图像分割网络存在分割精度低、图像信息易丢失、分割轮廓不清晰等问题。为提高医学图像分割准确率,提出一种结合胶囊网络与U-Net的多标签图像分割网络UCaps。以U-Net网络为架构,基于胶囊网络原理设计适用于胶囊网络的上采样算法,通过结合高斯混合模型作为聚类算法的EM路由算法聚合底层特征对高层特征的推导过程,使高层特征包含底层特征信息,同时底层特征间的位置、姿态等信息具有统一性。实验结果表明,相比U-Net、SegCaps、MaVec-Caps网络,UCaps网络的平均分割准确率为93.21%,其中左肺分割准确率达到98.24%,具有较高的图像分割准确率和较快的收敛速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号