首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-level finite element method is introduced and its application to the Helmholtz equation is considered. The method retains the desirable features of the Galerkin method enriched with residual-free bubbles, while it is not limited to discretizations using elements with simple geometry. The method can be applied to other equations and to irregular-shaped domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper a new numerical method for the multifrequency analysis of the three-dimensional Helmholtz equation is introduced. The collocation boundary element method (BEM) is used for the discretisation of the problem. The identity of the Fourier transform with respect to the wave number is applied to the matrix of the resulting linear system. The analytical form and some important properties are derived. Some numerical examples for the solution are presented.  相似文献   

3.
Based on properties of the Helmholtz equation, we derive a new equation for an auxiliary variable. This reduces much of the oscillations of the solution leading to more accurate numerical approximations to the original unknown. Computations confirm the improved accuracy of the new models in both two and three dimensions. This also improves the accuracy when one wants the solution at neighbouring wavenumbers by using an expansion in k. We examine the accuracy for both waveguide and scattering problems as a function of k, h and the forcing mode l. The use of local absorbing boundary conditions is also examined as well as the location of the outer surface as functions of k. Connections with parabolic approximations are analysed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A meshless method for the solution of Helmholtz equation has been developed by using the radial basis integral equation method (RBIEM). The derivation of the integral equation used in the RBIEM is based on the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source points always in the centre of circular sub-domains in order to avoid singular or near-singular integrals. Three equations for two-dimensional (2D) or four for three-dimensional (3D) potential problems are required at each node. The first equation is the integral equation arising from the application of the Green’s identities and the remaining equations are the derivatives of the first equation with respect to space coordinates. Radial basis function (RBF) interpolation is applied in order to obtain the values of the field variable and partial derivatives at the boundary of the circular sub-domains, providing this way the boundary conditions for solution of the integral equations at the nodes (centres of circles). The accuracy and robustness of the method has been tested on some analytical solutions of the problem. Two different RBFs have been used, namely augmented thin plate spline (ATPS) in 2D and f(R)=4Rln(R) augmented by a second order polynomial. The latter has been found to produce more accurate results.  相似文献   

5.
In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.  相似文献   

6.
A new residual‐based finite element method for the scalar Helmholtz equation is developed. This method is obtained from the Galerkin approximation by appending terms that are proportional to residuals on element interiors and inter‐element boundaries. The inclusion of residuals on inter‐element boundaries distinguishes this method from the well‐known Galerkin least‐squares method and is crucial to the resulting accuracy of this method. In two dimensions and for regular bilinear quadrilateral finite elements, it is shown via a dispersion analysis that this method has minimal phase error. Numerical experiments are conducted to verify this claim as well as test and compare the performance of this method on unstructured meshes with other methods. It is found that even for unstructured meshes this method retains a high level of accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
When applying numerical methods for the computation of stationary waves from the Helmholtz equation, one obtains ‘numerical waves’ that are dispersive also in non-dispersive media. The numerical wave displays a phase velocity that depends on the parameter k of the Helmholtz equation. In dispersion analysis, the phase difference between the exact and the numerical solutions is investigated. In this paper, the authors' recent result on the phase difference for one-dimensional problems is numerically evaluated and discussed in the context of other work directed to this topic. It is then shown that previous error estimates in H1-norm are of nondispersive character but hold for medium or high wavenumber on extremely refined mesh only. On the other hand, recently proven error estimates for constant resolution contain a pollution term. With certain assumptions on the exact solution, this term is of the order of the phase difference. Thus a link is established between the results of dispersion analysis and the results of numerical analysis. Throughout the paper, the presentation and discussion of theoretical results is accompanied by numerical evaluation of several model problems. Special attention is given to the performance of the Galerkin method with a higher order of polynomial approximation p(h-p-version).  相似文献   

8.
When numerical methods such as the finite element method (FEM) are used to solve the Helmholtz equation, the solutions suffer from the so‐called pollution effect which leads to inaccurate results, especially for high wave numbers. The main reason for this is that the wave number of the numerical solution disagrees with the wave number of the exact solution, which is known as dispersion. In order to obtain admissible results a very high element resolution is necessary and increased computational time and memory capacity are the consequences. In this paper a meshfree method, namely the radial point interpolation method (RPIM), is investigated with respect to the pollution effect in the 2D‐case. It is shown that this methodology is able to reduce the dispersion significantly. Two modifications of the RPIM, namely one with polynomial reproduction and another one with a problem‐dependent sine/cosine basis, are also described and tested. Numerical experiments are carried out to demonstrate the advantages of the method compared with the FEM. For identical discretizations, the RPIM yields considerably better results than the FEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we apply the variational multiscale method with subgrid scales on the element boundaries to the problem of solving the Helmholtz equation with low‐order finite elements. The expression for the subscales is obtained by imposing the continuity of fluxes across the interelement boundaries. The stabilization parameter is determined by performing a dispersion analysis, yielding the optimal values for the different discretizations and finite element mesh configurations. The performance of the method is compared with that of the standard Galerkin method and the classical Galerkin least‐squares method with very satisfactory results. Some numerical examples illustrate the behavior of the method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the pollution effect, and explores the feasibility of a local spectral method, the discrete singular convolution (DSC) algorithm for solving the Helmholtz equation with high wavenumbers. Fourier analysis is employed to study the dispersive error of the DSC algorithm. Our analysis of dispersive errors indicates that the DSC algorithm yields a dispersion vanishing scheme. The dispersion analysis is further confirmed by the numerical results. For one‐ and higher‐dimensional Helmholtz equations, the DSC algorithm is shown to be an essentially pollution‐free scheme. Furthermore, for large‐scale computation, the grid density of the DSC algorithm can be close to the optimal two grid points per wavelength. The present study reveals that the DSC algorithm is accurate and efficient for solving the Helmholtz equation with high wavenumbers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
For high wave numbers, the Helmholtz equation suffers the so‐called ‘pollution effect’. This effect is directly related to the dispersion. A method to measure the dispersion on any numerical method related to the classical Galerkin FEM is presented. This method does not require to compute the numerical solution of the problem and is extremely fast. Numerical results on the classical Galerkin FEM (p‐method) is compared to modified methods presented in the literature. A study of the influence of the topology triangles is also carried out. The efficiency of the different methods is compared. The numerical results in two of the mesh and for square elements show that the high order elements control the dispersion well. The most effective modified method is the QSFEM [1,2] but it is also very complicated in the general setting. The residual‐free bubble [3,4] is effective in one dimension but not in higher dimensions. The least‐square method [1,5] approach lowers the dispersion but relatively little. The results for triangular meshes show that the best topology is the ‘criss‐cross’ pattern. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, several boundary element regularization methods, such as iterative, conjugate gradient, Tikhonov regularization and singular value decomposition methods, for solving the Cauchy problem associated to the Helmholtz equation are developed and compared. Regularizing stopping criteria are developed and the convergence, as well as the stability, of the numerical methods proposed are analysed. The Cauchy problem for the Helmholtz equation can be regularized by various methods, such as the general regularization methods presented in this paper, but more accurate results are obtained by classical methods, such as the singular value decomposition and the Tikhonov regularization methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In goal‐oriented adaptivity, the error in the quantity of interest is represented using the error functions of the direct and adjoint problems. This error representation is subsequently bounded above by element‐wise error indicators that are used to drive optimal refinements. In this work, we propose to replace, in the error representation, the adjoint problem by an alternative operator. The main advantage of the proposed approach is that, when judiciously selecting such alternative operator, the corresponding upper bound of the error representation becomes sharper, leading to a more efficient goal‐oriented adaptivity. While the method can be applied to a variety of problems, we focus here on two‐ and three‐dimensional (2‐D and 3‐D) Helmholtz problems. We show via extensive numerical experimentation that the upper bounds provided by the alternative error representations are sharper than the classical ones and lead to a more robust p‐adaptive process. We also provide guidelines for finding operators delivering sharp error representation upper bounds. We further extend the results to a convection‐dominated diffusion problem as well as to problems with discontinuous material coefficients. Finally, we consider a sonic logging‐while‐drilling problem to illustrate the applicability of the proposed method.  相似文献   

14.
It is well-known that every two-dimensional porous cavity with a conducting and impermeable boundary is degenerate, as it has two different eigensolutions at the onset of convection. In this paper it is demonstrated that the eigenvalue problem obtained from a linear stability analysis may be reduced to a second-order problem governed by the Helmholtz equation, after separating out a Fourier component. This separated Fourier component implies a constant wavelength of disturbance at the onset of convection, although the phase remains arbitrary. The Helmholtz equation governs the critical Rayleigh number, and makes it independent of the orientation of the porous cavity. Finite-difference solutions of the eigenvalue problem for the onset of convection are presented for various geometries. Comparisons are made with the known solutions for a rectangle and a circle, and analytical solutions of the Helmholtz equation are given for many different domains.  相似文献   

15.
Discretization of boundary integral equations leads, in general, to fully populated complex valued non-Hermitian systems of equations. In this paper we consider the efficient solution of these boundary element systems by preconditioned iterative methods of Krylov subspace type. We devise preconditioners based on the splitting of the boundary integral operators into smooth and non-smooth parts and show these to be extremely efficient. The methods are applied to the boundary element solution of the Burton and Miller formulation of the exterior Helmholtz problem which includes the derivative of the double layer Helmholtz potential—a hypersingular operator. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
A comparison of two bubble‐enriched methods, derived by different considerations, indicates that the methods are identical in some cases. Thus, series representations of auxiliary functions, derived independently for the two methods, turn out to be equivalent prior to truncation. Three such series for time‐harmonic acoustics are considered. Dispersion analysis points to the more efficient series representation and provides guidelines for the number of terms to be retained. Numerical tests confirm the validity of these practical guidelines. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the boundary integral equations (BIEs) for the tangential derivative of flux in Laplace and Helmholtz equations are presented. These integral representations can be used in order to solve several problems in the boundary element method (BEM): cubic solutions including degrees of freedom in flux's tangential derivative value (Hermitian interpolation), nodal sensitivity, analytic gradients in optimization problems, or tangential derivative evaluation in problems that require the computation of such variable (elasticity problems in BEM). The analysis has been developed for 2D formulation. Kernels for tangential derivative of flux lead to high‐order singularities (O(1/r3)). The limit to the boundary analysis has been carried out. Based on this analysis, regularization formulae have been obtained in order to use such BIE in numerical codes. A set of numerical benchmarks have been carried out in order to validate theoretical and practical aspects, by considering known analytic solutions for the test problems. The results show that the tangential BIEs have been properly developed and implemented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The boundary knot method is an inherently meshless, integration‐free, boundary‐type, radial basis function collocation technique for the solution of partial differential equations. In this paper, the method is applied to the solution of some inverse problems for the Helmholtz equation, including the highly ill‐posed Cauchy problem. Since the resulting matrix equation is badly ill‐conditioned, a regularized solution is obtained by employing truncated singular value decomposition, while the regularization parameter for the regularization method is provided by the L‐curve method. Numerical results are presented for both smooth and piecewise smooth geometry. The stability of the method with respect to the noise in the data is investigated by using simulated noisy data. The results show that the method is highly accurate, computationally efficient and stable, and can be a competitive alternative to existing methods for the numerical solution of the problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The boundary knot method (BKM) is an inherent boundary-type meshless collocation method for partial differential equations (PDEs). Using non-singular general solutions, numerical solutions of the PDE can be obtained based on the boundary points. In this paper, we investigate the applications of the BKM to solve Helmholtz problems involving various boundary conditions. We use the effective condition number to investigate the ill-conditioned interpolation system. Different from previous investigations, numerical results in this paper reveal that the BKM is promising in dealing with Helmholtz problems under only partially accessible boundary conditions.  相似文献   

20.
The standard finite element method (FEM) is unreliable to compute approximate solutions of the Helmholtz equation for high wave numbers due to the dispersion, unless highly refined meshes are used, leading to unacceptable resolution times. The paper presents an application of the element‐free Galerkin method (EFG) and focuses on the dispersion analysis in one dimension. It shows that, if the basis contains the solution of the homogenized Helmholtz equation, it is possible to eliminate the dispersion in a very natural way while it is not the case for the finite element methods. For the general case, it also shows that it is possible to choose the parameters of the method in order to minimize the dispersion. Finally, theoretical developments are validated by numerical experiments showing that, for the same distribution of nodes, the element‐free Galerkin method solution is much more accurate than the finite element one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号