首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

2.
聚乙二醇/聚己内酯三嵌段共聚物的合成与表征   总被引:3,自引:0,他引:3  
以甲苯二异氰酸酯 (TDI)为偶联剂 ,合成了聚乙二醇 (PEG) /聚己内酯 (PCL)两亲性三嵌段共聚物 (PEG-b-PCL -b -PEG ,PECL) ,采用IR、1 H-NMR、DSC和WAXD分析和研究了PECL的结构与性能。实验结果表明 ,PECL的结构和组成与设计相一致 ,结晶度和熔点均低于均聚物 ,且随着PECL中PCL嵌段含量的增加 ,PCL嵌段熔点升高。透射电镜照片显示PECL纳米粒呈核 /壳结构的球形。  相似文献   

3.
含有草酸酯的共聚酯的合成与性能研究   总被引:3,自引:0,他引:3  
以草酸二乙酯(DEOX)为原料,采用熔融缩聚法制备了草酸乙二醇酯与对苯二甲酸乙二醇酯、癸二酸乙二醇酯的无规共聚酯(PETOXS)。考察了共聚酯的热性能、水解性能和拉伸性能。结果表明,共聚酯的熔点、结晶行为依赖于组成,芳香族聚酯含量少的共聚酯的热分解温度受两种脂肪族聚酯单元组成的影响。PET含量多,共聚酯的水解性能差;而聚草酸酯含量高,水解快、模量高、应变小。  相似文献   

4.
The effect of polyaniline and poly(ethylene glycol) diglycidyl ether on tensile properties, morphology, thermal degradation, and electrical conductivity of poly(vinyl chloride)/poly(ethylene oxide)/polyaniline conductive films was studied. The poly(vinyl chloride)/poly(ethylene oxide)/polyaniline conductive films were prepared using a solution casting technique at room temperature until a homogeneous solution was produced. Poly(vinyl chloride)/poly(ethylene oxide)/polyaniline/poly(ethylene glycol) diglycidyl ether conductive films exhibit higher electrical properties, tensile strength, modulus of elasticity but lower final decomposition temperature than poly(vinyl chloride)/poly(ethylene oxide)/polyaniline conductive films. Scanning electron microscopy morphology showed that the polyaniline more widely dispersed in the poly(vinyl chloride)/poly(ethylene oxide) blends with the addition of poly(ethylene glycol) diglycidyl ether as surface modifier.  相似文献   

5.
聚乙二醇中共轭烯炔化合物的合成   总被引:2,自引:1,他引:1  
发展了一种在聚乙二醇介质中末端炔烃与缺电子炔烃选择性生成共轭烯炔化合物的方法。在三苯基膦氯化钯(2mol%)、溴化亚铜(4mol%)、PEG-400(1.0g)和氮气的作用下,1mmol末端炔烃与0.5mmol缺电子炔烃可以顺利地发生交叉偶联反应选择性生成相应的共轭烯炔化合物,该反应产率较高,对环境友好,且催化体系可以适当地重复使用。  相似文献   

6.
The effect of crystalline morphology on the hydrolytic degradation behavior of poly(butylene succinate) (PBS) in an alkaline solution was investigated by using scanning electron microscopy, gel permeation chromatography, and weight loss measurement. Morphological changes were induced on PBS samples by different thermal treatments (i.e., melt quenching or isothermal crystallization) at a constant overall degree of crystallinity. It was found that even with a similar degree of crystallinity, the hydrolytic degradation rate of an isothermally crystallized sample at 60°C was higher than that of a melt‐quenched sample. This was due to the difference in the internal morphology of the spherulites: the internal structure of spherulite in an isothermally crystallized sample consists of coarse and loosely packed fibrils whereas a melt‐quenched sample contains finer and tightly packed fibrils. This result suggested that the internal structure of the spherulite of PBS samples plays an important role in the hydrolytic degradation for this experimental condition. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1025–1033, 2001  相似文献   

7.
白静  崔晶  顾玉蓉  刘红波 《塑料》2020,49(2):64-68
采用溶液共混法制备了一系列不同配比的聚乳酸(PLA)/聚乙二醇(PEG)共混物。通过偏光显微镜(POM)、扫描电镜(SEM)和差式扫描量热仪(DSC)研究了不同PEG含量的PLA/PEG共混物在不同结晶温度下,聚乳酸的晶体形貌、球晶生长速率及热力学性能。研究发现,PEG能够显著提高聚乳酸球晶的生长速率。当PEG含量为60%时,PLA/PEG共混物中聚乳酸球晶的生长速率最快,达到23.6μm/min,比纯聚乳酸的最快球晶生长速率(0.5μm/min)高47倍。但是,当PEG含量高于60%时,聚乳酸球晶的生长速率有所降低。同时,PLA/PEG共混物中聚乳酸球晶速率随结晶温度变化的取向,均向低温移动。另外,PLA/PEG共混物中聚乳酸球晶呈现环状花纹。DSC测试结果表明,随着PEG含量的增加,PLA/PEG共混物的玻璃化转变温度明显降低。  相似文献   

8.
9.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

10.
This study deals with the effects of pH and neutral salts on the adsorption of PET fiber with four kinds of poly(ethylene glycol terephthalate) condensated from dimethyl terephthalate (DMT) and poly(ethylene glycol) (PEG). The surface properties of the aqueous solution, the contact angle of polyol‐treated PET fabrics, and its parameters were also discussed. The pH of the solution or the adding of neutral salt in the polyol solution largely affected the contact angle of polyol‐treated PET fabrics as well as the surface tension of the solution. A lower pH of the polyol solution or adding neutral salts in the solution showed a lower surface tension and a lower contact angle that resulted in a better adsorption between polyol and poly(ethylene terephthalate) fibers. The lower pH of the solutions and a higher valence of the added neutral salt in the solution showed a largely positive effect on the adsorption parameters, and the order of effectiveness is Al2(SO4)3 > MgSO4 > Na2SO4.  相似文献   

11.
Poly(ethylene glycol)s [HO(CH2CH2O)nH, where n > 3] are highly active and selective in catalyzing dehydrochlorination of poly(vinyl chloride) in organic–aqueous hydroxide two-phase systems. Their catalytic activity and stability are much higher than those of widely used quaternary ammonium or phosphonium compounds. Poly(vinyl chloride) can be extensively dehydrochlorinated within half an hour at room temperature. The products are polyacetylene-like and have long polyene sequences according to their UV/visible, FT-Raman, and FT-infrared spectra. They can be doped by iodine to conductive states, with conductivities of 1–4 S cm−1. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2463–2469, 1998  相似文献   

12.
The in-vitro degradation behavior of poly(glycolic acid) (PGA) rods and the composite rods containing poly(L-lactic acid) (PLLA) were investigated via mass loss, pH value change, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Since the degradation rate of PLLA is lower than that of PGA, PLLA/PGA composite rods exhibit a slower degradation rate in comparison with PGA. This finding indicated that it was possible to control the degradation rate of the composites by changing their composition. This result indicates that this kind of composite biomaterial may be applicable to devices for the need of prolonged degradation.  相似文献   

13.
Molecular weight is an important factor in the processing of polymer materials, and it should be well controlled to obtain desired physical properties in final products for end‐use applications. Degradation processes of all kinds, including hydrolytic, thermal, and oxidative degradations, cause chain scission in macromolecules and a reduction in molecular weight. The main purpose of this research is to illustrate the importance of degradation in the drying of poly(ethylene terephthalate) (PET) before processing and the loss of weight and mechanical properties in textile materials during washing. Several techniques were used to investigate the hydrolytic degradation of PET and its effect on changes in molecular weight. Hydrolytic conditions were used to expose fiber‐grade PET chips in water at 85°C for different periods of time. Solution viscometry and end‐group analysis were used as the main methods for determining the extent of degradation. The experimental results show that PET is susceptible to hydrolysis. Also, we that as the time of retention in hydrolytic condition increased, the molecular weight decreases, but the rate of chain cleavage decreased to some extent, at which point there was no more sensible degradation. The obtained moisture content data confirmed the end‐group analysis and viscometry results. Predictive analytical relationships for the estimation of the extent of degradation based on solution viscosity and end‐group analysis are presented. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2304–2309, 2007  相似文献   

14.
N-芳基咪唑类化合物是一类非常重要的结构单元,常见于药物、农药以及生物分子中,因此寻找新的合成N-芳基咪唑类物质的方法成为有机合成化学家关注的热点问题之一。在绿色化学的倡导下,研究发展了一个促进咪唑类底物与芳基硼酸N-芳基化反应的催化体系,它是以Cu_2O(10%)为催化剂,以聚乙二醇400为反应介质,在室温下反应。研究结果表明,该催化体系适用于咪唑类底物与各种具有不同取代基的芳基硼酸的N-芳基化反应,为N-芳基咪唑类化合物提供一个简单、有效、绿色的合成方法。  相似文献   

15.
Blends of the commercial biodegradable polymer poly(hydroxybutyrate) (PHB) with the oligomeric polyester poly(ethylene succinate) (PES) were prepared by melt processing in the presence of Sm(acac)3. The occurrence of transesterification reactions during blend processing using the samarium catalyst was investigated. 1H NMR analyses showed no evidence of transreactions, even using high content of catalyst (4 wt%), long reaction times and high temperatures (200°C). Under the drastic reaction conditions employed, chain degradation characterized by a significant decrease in the molecular weight (MW) of PHB has taken place. PHB/PES blends form immiscible systems in which the PHB crystallizes as large spherulites, but its crystallization is significantly influenced by the presence of PES, which does not crystallize at conditions in which the poly(hydroxyalkanoate) is crystallized.  相似文献   

16.
聚丁二酸乙二醇酯(PES)具有优异的力学性能和生物降解性能,在可生物降解塑料领域具有广泛的应用前景。以乙二醇铝为催化剂,催化丁二酸和乙二醇直接酯化缩聚合成了高分子量聚丁二酸乙二醇酯(PES)。采用FT-IR和1H-NMR对催化剂和合成聚合物的结构进行了表征,系统分析了催化剂浓度、聚合反应温度和时间对聚合反应的影响。经常压酯交换后获得的预聚体,在240℃条件下,缩聚4 h后,合成PES的特性黏数[η]可达到0.684 dL/g,重均分子量Mw和数均分子量Mn分别可以达到78632和47945,相对分子质量分布系数PDI值为1.64。乙二醇铝体系中获得的PES聚合物分子量与商业锑系和钛系催化体系中合成聚合物分子量相当,具有广泛工业化应用前景。  相似文献   

17.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

18.
Polyhydroxybutyrate (PHB) and its copolymer with hydroxyvalerate, P(HB‐co‐HV), are widely used biomaterials. In this study, improvements of their biological properties of degradability and compatibility were achieved by blending with low‐molecular‐weight poly(ethylene glycol) (PEG106) approved for medical use. Surface morphology and chemistry are known to support cell attachment. Attachment and proliferation of neural olfactory ensheathing cells increased by 17.0 and 32.2% for PHB and P(HB‐co‐HV) composite films. Cell attachment was facilitated by increases in surface hydrophilicity, water contact angles decreased by 26 ± 2° and water uptake increased by 23.3% depending upon biopolymer and PEG loading. Cells maintained high viability (>95%) on the composite films with no evidence of cytotoxic effects. Assays of mitochondrial function and cell leakage showed improved cell health as a consequence of PEG loading. The PEG component was readily solubilised from composite films, allowing control of degradation profiles in the cell growth medium. Promotion of biopolymer compatibility and degradability was not at the expense of material properties, with the extension to break of the composites increasing by 5.83 ± 1.06%. Similarly, crystallinity decreased by 36%. The results show that blending of common polyhydroxyalkanoate biomaterials with low‐molecular‐weight PEG can be used to promote biocompatibility and manipulate physiochemical and material properties as well as degradation.© 2013 Society of Chemical Industry  相似文献   

19.
综述了直接酯化聚合法、丁二酸酐开环聚合法、酯交换聚合法、耦合反应法合成聚丁二酸乙二醇酯(PES)的国内外研究进展,着重介绍了丁二酸和乙二醇酯化聚合法合成PES的催化剂和工艺的研究现状,并展望了PES及其合成工艺的发展前景。  相似文献   

20.
The fractional crystallization kinetics and phase behavior of PEO with different molecular weights (MWs) in its miscible crystalline/crystalline blends with PBS are studied. Both fractional crystallization kinetics and phase segregation of PEO in PBS/PEO blends are dramatically influenced by its MW. PEO with a medium MW (20 kDa) shows a significant fractional crystallization in the blends with PBS crystallized at a high TIC,PBS, which, however, is dramatically depressed in the blends with a very low or high MW of PEO. This indicates that the PEO component with a medium MW is more ready to segregate into the interlamellar region of PBS crystals than those with a very low or high MW. The MW‐dependent fractional crystallization kinetics and phase segregation of PEO component in the PBS/PEO blends are discussed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号