首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The SKS1 gene was originally identified as a multicopy suppressor of the growth defect of snf3 null mutations on low glucose concentrations. Snf3p is required for the rapid induction of HXT2 during growth on low substrate concentrations. Loss of Snf3p leads to a dramatic delay in expression of HXT2. Adaptation to low substrate concentrations does not occur in snf3 sks1 double null mutant strains, suggesting that SKS1 is required for the glucose-dependent expression of HXT2 in the absence of Snf3p activity. Over-expression of SKS1 leads to over-expression of Hxt2p, thus explaining the mechanism of suppression of the snf3 defect. SKS1 defines a novel, Snf3p-independent pathway for the expression of Hxt2p. Under certain growth conditions, over-expression of SKS1 itself leads to a growth defect which is diminished in snf3 hxt2 double mutants. This suggests that over-expression of Hxt2p at physiologically inappropriate times is detrimental to the cells. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Saccharomyces cerevisiae strains carrying snf3 are defective in high affinity glucose transport, and thus are unable to grow fermentatively on media with low concentrations of glucose. A multicopy suppressor of the snf3 growth defect, SKS1 (suppressor kinase of snf3), was found to encode a putative ser/thr protein kinase homologous to Ran1p, a kinase that regulates the switch between meiosis and vegetative growth in Schizosaccharomyces pombe. Overexpression of the SKS1 open reading frame is sufficient for suppression of the growth defects of snf3 mutants. Disruption of the open reading frame eliminates this suppression; as does the mutation of the consensus ATP binding site of Sks1p. A DDSE (DNA dependent snf3 suppressor element) was found to be present in the SKS1 promoter region. The suppression by this DDSE occurs in the absence of SKS1 coding region, that is, the DDSE can suppress a snf3 sks1 double null mutant which fails to grow fermentatively on low glucose as a snf3 mutant does. Both SKS1 and its DDSE can additionally suppress the growth defects of grr1 mutants, which are also impaired in high affinity glucose transport. The snf3 genomic suppressors, rgt1, RGT2 and ssn6, are also capable of suppressing snf3 associated growth defects in a strain lacking sks1.  相似文献   

4.
Mutations in the SNF8 gene impair derepresson of the SUC2 gene, encoding invertase, in response to glucose limitation of Saccharomyces cerevisiae. We report here the cloning of the SNF8 gene by complementation. Sequence analysis predicts a 26 936-dalton product. Disruption of the chromosomal locus caused a five-fold decrease in invertase derepression, defective growth on raffinose, and a sporulation defect in homozygous diploids. Genetic analysis of the interactions of the snf8 null mutation with spt6/ssn20 and ssn6 suppressors distinguished SNF8 from the groups, SNF1, SNF4 and SNF2, SNF5, SNF6. Notably, the snf8 ssn6 double mutants were extremely sick. Mutations of SNF8 and SNF7 showed similar phenotypes and genetic interactions, and the double mutant combination caused no additional phenotypic impairment. These findings suggest that SNF7 and SNF8 are functionally related. The complete nucleotide sequence of SNF8 has been deposited in GenBank under accession number U10361.  相似文献   

5.
We cloned a genomic DNA fragment of the yeast Torulaspora delbrueckii by complementation of a Saccharomyces cerevisiae snf1Δ mutant strain. DNA sequence analysis revealed that the fragment contained a complete open reading frame (ORF), which shares a high similarity with the S. cerevisiae energy sensor protein kinase Snf1. The cloned TdSNF1 gene was able to restore growth of the S. cerevisiae snf1Δ mutant strain on media containing nonfermentable carbon sources. Furthermore, cells of the Tdsnf1Δ mutant were unable to proliferate under nonfermenting conditions. Finally, protein domain analysis showed that TdSnf1p contains a typical catalytic protein kinase domain (positions 41–293), which is also present in other Snf1p homologues. Within this region we identified a protein kinase ATP‐binding region (positions 48–71) and a consensus Ser/Thr protein kinase active site (positions 160–172). The GenBank Accession No. for the sequenced DNA fragment is HM131845. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Snf3 is a plasma membrane protein in Saccharomyces cerevisiae able to sense the presence of glucose. Although the Snf3 protein does not transport sugars, it shares sequence similarity with various glucose transporters from other organisms. We investigated the sugar specificity/preferences of Snf3. The ability of cells to sense sugars in vivo was monitored by following the degradation of the Mth1 protein, an early event in the signal pathway. Our study reveals that Snf3, in addition to glucose, also senses fructose and mannose, as well as the glucose analogues 2‐deoxyglucose, 3‐O‐methylglucoside and 6‐deoxyglucose. The signalling proficiency of a non‐phosphorylatable analogue strongly supports the notion that sensing through Snf3 does not require sugar phosphorylation. Sequence comparisons of Snf3 to glucose transporters indicated amino acid residues possibly involved in sensing of sugars other than glucose. By site‐specific mutagenesis of the structural gene, roles of specific residues in Snf3 could be established. Change of isoleucine‐374 to valine in transmembrane segment 7 of Snf3 partially abolished sensing of fructose and mannose, while mutagenesis causing a change of phenylalanine‐462 to tyrosine in transmembrane segment 10 of Snf3 abolished sensing of fructose. Neither of these amino acid changes affected the ability of Snf3 to sense glucose, nor did they permit Snf3 to sense galactose. These data indicate a similarity between a ligand binding site of the sensor Snf3 and binding sites used for facilitated hexose transport in the GLUT proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
10.
HM, an HMG1-like mitochondrial DNA-binding protein, is required for maintenance of the yeast mitochondrial genome when cells are grown in glucose. To better understand the role of HM in mitochondria, we have isolated several multicopy suppressors of the temperature-sensitive defect associated with an abf2 null mutation (lacking HM protein). One of these suppressors, SHM1, has been characterized at the molecular level and is described herein. SHM1 encodes a protein (SHM1p) that shares sequence similarity to a family of mitochondrial carrier proteins. On glycerol medium, where mitochondrial function is required for growth, shm1 deletion mutants are able to grow, whereas shm1 abf2 double mutants are severely inhibited. These results suggest that SHM1p plays an accessory role to HM in the mitochondrion. The GenBank Accession Number for the SHM1 sequence is U08352.  相似文献   

11.
12.
Ty3 elements of S. cerevisiae contain two overlapping coding regions, GAG3 and POL3, which are functional homologues of retroviral gag and pol genes, respectively. Pol3 is translated as a Gag3-Pol3 fusion protein dependent on a +1 programmed frameshift at a site with the overlap between the two genes. We show that the Ty3 frameshift frequency varies up to 10-fold in S. cerevisiae cells depending on carbon source. Frameshift efficiency is significantly lower in cells growing on glucose as carbon source than in cells growing on poor alternative carbon sources (glycerol/lactate or galactose). Our results indicate that Ty3 programmed ribosomal frameshift efficiency in response to glucose signalling requires two protein kinases: Snf1p and cAMP-dependent protein kinase A (PKA). Increased frameshifting on alternative carbon sources also appears to require cytoplasmic localization of Snf1p, mediated by the Sip2p protein. In addition to the two required protein kinases, our results implicate that Stm1p, a ribosome-associated protein involved in nutrient sensing, is essential for the carbon source-dependent regulation of Ty3 frameshifting. These data indicate that Ty3 programmed ribosomal frameshift is not a constitutive process but that it is regulated in response to the glucose-signalling pathway.  相似文献   

13.
The DNA sequence of a region between the LTE1 and CYS3 genes on the left arm of chromosome I from Saccharomyces cerevisiae contains an open reading frame (ORF), YAL017, corresponding to the 5·0 kb FUN31 (F unction U nknown N ow) transcribed region. The predicted protein from this ORF contains 1358 amino acid residues with a molecular weight of 152 531, and an identifiable serine/threonine protein kinase catalytic domain. When compared with other yeast protein kinases, the Ya1017p kinase most resembles the SNF1 serine/threonine protein kinase which is involved in regulating sucrose fermentation genes. The Ya1017p kinase shows highest amino acid identities with two mammalian carcinoma-related serine/threonine protein kinases; PIM-1, which shows induced expression in T-cell lymphomas; and p78A1, whose expression is lost in human pancreatic carcinomas. Gene disruption of YAL017 indicates that it is non-essential for growth on glucose.  相似文献   

14.
15.
16.
17.
In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase‐related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2‐phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double‐null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase‐related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A low-affinity glucose transporter gene of Saccharomyces cerevisiae was cloned by complementation of the rag1 mutation in a strain of Kluyveromyces lactis defective in low-affinity glucose transport. Gene sequence and effects of null mutation in S. cerevisiae were described. Data indicated that there are multiple genes for low-affinity glucose transport.  相似文献   

19.
The complete sequence of a 36 196 bp DNA segment located on the right arm of chromosome XV of Saccharomyces cerevisiae has been determined and analysed. The sequence includes the 5′ coding region of the SNF2 gene, the CPA1 leader peptide sequence and 17 open reading frames (ORFs) of at least 100 amino acids. Two of these correspond to previously known genes (CPA1, SLY41), whereas 15 correspond to new genes. The putative translation products of three ORFs show significant similarity with known proteins: one is a putative transport ATPase, another appears to be a ribosomal protein, and the third is an Snf2p homologue. The sequence has been deposited in the EMBL databank under Accession Numbers: Z75198, Z75199, Z75200, Z75201, Z75202, Z75203, Z75204, Z75205, Z75206, Z75207, Z75209, Z75210, Z75211, Z75212, Z75213, Z75214, Z75215, Z75216. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Genomic DNA of the Schizosaccharomyces pombe glucose transporter, GHT1, was obtained by complementation of the glucose transport deficient Sz. pombe strain YGS-5. Here we describe the GHT1 gene that encodes a protein of 565 amino acids with a corresponding molecular mass of 62·5 kDa. This eukaryotic glucose transporter contains 12 putative transmembrane segments and is homologous to the HXT multigene family of S. cerevisiae with several amino acid motifs of this sugar transporter family. It is also homologous to other sugar carriers from human, mouse and Escherichia coli. The function of the Ght1 protein as a glucose transporter was proved both by homologous and heterologous expression in the Sz. pombe mutant YGS-5 and in the S. cerevisiae hxt mutant RE700A, respectively. Both transformed yeast strains transported d -glucose with substrate specificity similar to that in Sz. pombe wild-type cells. Moreover, the cells of the two transformed yeast strains accumulated 2-deoxy-d -glucose, a non-metabolizable d -glucose analogue, with an efficiency similar to Sz. pombe wild-type cells. The ability of the S. cerevisiae mutant RE700A to accumulate 2DG in an Δμdependent manner after transformation with GHT1 provides evidence that the Sz. pombe transporter catalyses an energy-dependent uptake of glucose. The sequence of GHT1 was deposited at EMBL, Outstation EBI, Accession Number X91218. ©1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号