首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a nonlinear inverse boundary value problem associated to the biharmonic equation is investigated. This problem consists of determining an unknown boundary portion of a solution domain by using additional data on the remaining known part of the boundary. The method of fundamental solutions (MFS), in combination with the Tikhonov zeroth order regularization technique, are employed. It is shown that the MFS regularization numerical technique produces a stable and accurate numerical solution for an optimal choice of the regularization parameter. A. Zeb on study leave visiting the University of Leeds.  相似文献   

2.
We study the identification of an unknown portion of the boundary of a two-dimensional domain occupied by a material satisfying Helmholtz-type equations from additional Cauchy data on the remaining known portion of the boundary. This inverse geometric problem is approached using the boundary element method (BEM) in conjunction with the Tikhonov first-order regularization procedure, whilst the choice of the regularization parameter is based on the L-curve criterion. The numerical results obtained show that the proposed method produces a convergent and stable solution  相似文献   

3.
In this work, a new numerical method for the inverse problem of determining a spacewise‐dependent heat source for a parabolic heat equation is developed. We reconstruct the unknown heat source by an augmented Tikhonov regularization (a‐TR) method derived from a Bayesian perspective. The a‐TR method could determine the regularization parameter and detect the noise level automatically. Numerical results for several benchmark test problems indicate that the a‐TR method is an accurate and flexible method to determine the unknown spacewise‐dependent heat source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we propose a numerical algorithm based on the method of fundamental solutions for recovering a space-dependent heat source and the initial data simultaneously in an inverse heat conduction problem. The problem is transformed into a homogeneous backward-type inverse heat conduction problem and a Dirichlet boundary value problem for Poisson's equation. We use an improved method of fundamental solutions to solve the backward-type inverse heat conduction problem and apply the finite element method for solving the well-posed direct problem. The Tikhonov regularization method combined with the generalized cross validation rule for selecting a suitable regularization parameter is applied to obtain a stable regularized solution for the backward-type inverse heat conduction problem. Numerical experiments for four examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed algorithm.  相似文献   

5.
In this paper, numerical solutions are investigated based on the Trefftz method for an over-specified boundary value problem contaminated with artificial noise. The main difficulty of the inverse problem is that divergent results occur when the boundary condition on over-specified boundary is contaminated by artificial random errors. The mechanism of the unreasonable result stems from its ill-posed influence matrix. The accompanied ill-posed problem is remedied by using the Tikhonov regularization technique and the linear regularization method, respectively. This remedy will regularize the influence matrix. The optimal parameter λ of the Tikhonov technique and the linear regularization method can be determined by adopting the adaptive error estimation technique. From this study, convergent numerical solutions of the Trefftz method adopting the optimal parameter can be obtained. To show the accuracy of the numerical solutions, we take the examples as numerical examination. The numerical examination verifies the validity of the adaptive error estimation technique. The comparison of the Tikhonov regularization technique and the linear regularization method was also discussed in the examples.  相似文献   

6.
Considered in this paper is a Cauchy problem governed by an elliptic partial differential equation. In the Cauchy problem, one wants to recover the unknown Neumann and Dirichlet data on a part of the boundary from the measured Neumann and Dirichlet data, usually contaminated with noise, on the remaining part of the boundary. The Cauchy problem is an inverse problem with severe ill-posedness. In this paper, a coupled complex boundary method (CCBM), originally proposed in [Cheng XL, Gong RF, Han W, et al. A novel coupled complex boundary method for solving inverse source problems. Inverse Prob. 2014;30:055002], is applied to solve the Cauchy problem stably. With the CCBM, all the data, including the known and unknown ones on the boundary are used in a complex Robin boundary on the whole boundary. As a result, the Cauchy problem is transferred into a complex Robin boundary problem of finding the unknown data such that the imaginary part of the solution equals zero in the domain. Then the Tikhonov regularization is applied to the resulting new formulation. Some theoretical analysis is performed on the CCBM-based Tikhonov regularization framework. Moreover, through the adjoint technique, a simple solver is proposed to compute the regularized solution. The finite-element method is used for the discretization. Numerical results are given to show the feasibility and effectiveness of the proposed method.  相似文献   

7.
This paper aims to solve an inverse heat conduction problem in two-dimensional space under transient regime, which consists of the estimation of multiple time-dependent heat sources placed at the boundaries. Robin boundary condition (third type boundary condition) is considered at the working domain boundary. The simultaneous identification problem is formulated as a constrained minimization problem using the output least squares method with Tikhonov regularization. The properties of the continuous and discrete optimization problem are studied. Differentiability results and the adjoint problems are established. The numerical estimation is investigated using a modified conjugate gradient method. Furthermore, to verify the performance of the proposed algorithm, obtained results are compared with results obtained from the well-known finite-element software COMSOL Multiphysics under the same conditions. The numerical results show that the proposed algorithm is accurate, robust and capable of simultaneously representing the time effects on reconstructing the time-dependent Robin coefficient and heat flux.  相似文献   

8.
This paper presents an application of the dual reciprocity method (DRM) to a class of inverse problems governed by the Poisson equation. Here the term inverse refers to the fact that the boundary conditions are not fully specified, i.e. they are not known for the entire boundary of the solution domain. In order to investigate the ability of the DRM to reconstruct the unknown boundary conditions using overspecified conditions on the accessible part of the boundary we consider some test problems involving circular, annular and square domains. Due to the ill-posed nature of the problem, i.e. the instabilities in the solution of these problems, the DRM is combined with the Tikhonov regularization method.  相似文献   

9.
This paper investigates the inverse problem of determining a heat source in the parabolic heat equation using the usual conditions of the direct problem and a supplementary condition, called an overdetermination. In this problem, if the heat source is taken to be space-dependent only, then the overdetermination is the temperature measurement at a given single instant, whilst if the heat source is time-dependent only, then the overdetermination is the transient temperature measurement recorded by a single thermocouple installed in the interior of the heat conductor. These measurements ensure that the inverse problem has a unique solution, but this solution is unstable, hence the problem is ill-posed. This instability is overcome using the Tikhonov regularization method with the discrepancy principle or the L-curve criterion for the choice of the regularization parameter. The boundary-element method (BEM) is developed for solving numerically the inverse problem and numerical results for some benchmark test examples are obtained and discussed  相似文献   

10.
In this paper, we investigate the inverse heat source problem of finding the time-dependent source function together with the temperature. Three general nonlocal conditions are considered for the boundary and overdetermination conditions resulting in six different cases. The boundary element method combined with Tikhonov regularization is employed in order to obtain an accurate and stable numerical solution.  相似文献   

11.
We study the stable numerical identification of an unknown portion of the boundary on which a given boundary condition is provided and additional Cauchy data are given on the remaining known portion of the boundary of a two-dimensional domain for problems governed by either the Helmholtz or the modified Helmholtz equation. This inverse geometric problem is solved using the method of fundamental solutions (MFS) in conjunction with the Tikhonov regularization method. The optimal value for the regularization parameter is chosen according to Hansen's L-curve criterion. The stability, convergence, accuracy and efficiency of the proposed method are investigated by considering several examples.  相似文献   

12.
This paper is devoted to determine a time-dependent source term in a time-fractional diffusion equation by using the usual initial and boundary data and an additional measurement data at an inner point. Based on the separation of variables and Duhamel's principle, we transform the inverse source problem into a first kind Volterra integral equation with the source term as the unknown function and then show the ill-posedness of the problem. Further, we use a boundary element method combined with a generalized Tikhonov regularization to solve the Volterra integral equation of the fist kind. The generalized cross-validation choice rule is applied to find a suitable regularization parameter. Four numerical examples are provided to show the effectiveness and robustness of the proposed method.  相似文献   

13.
We investigate two algorithms involving the relaxation of either the given boundary temperatures (Dirichlet data) or the prescribed normal heat fluxes (Neumann data) on the over-specified boundary in the case of the iterative algorithm of Kozlov91 applied to Cauchy problems for two-dimensional steady-state anisotropic heat conduction (the Laplace-Beltrami equation). The two mixed, well-posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. The iterative MFS algorithms with relaxation are tested for over-, equally and under-determined Cauchy problems associated with the steady-state anisotropic heat conduction in various two-dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method.  相似文献   

14.
An inverse geometric problem for two-dimensional Helmholtz-type equations arising in corrosion detection is considered. This problem involves determining an unknown corroded portion of the boundary of a two-dimensional domain and possibly its surface heat transfer (impedance) Robin coefficient from one or two pairs of boundary Cauchy data (boundary temperature and heat flux), and is solved numerically using the meshless method of fundamental solutions. A nonlinear unconstrained minimisation of the objective function is regularised when noise is added into the input boundary data. The stability of the numerical results is investigated for several test examples, with respect to noise in the input data and various values of the regularisation parameters.  相似文献   

15.
In this paper, we propose a regularization method for determining a moving boundary from Cauchy data in one-dimensional heat equation with a multilayer domain. The numerical scheme is based on the use of the method of fundamental solutions and a discrete Tikhonov regularization technique. The generalized cross validation rule for the choice of a regularization parameter is applied to obtain a stable numerical approximation to the moving boundary. Numerical experiments for five examples show that our proposed method is effective and stable.  相似文献   

16.
In this note, a meshless numerical scheme for solving an inverse heat conduction problem (IHCP) is considered. The fundamental solution of heat equation is used as a radial basis function. Applying this radial basis function results in a badly ill-condition system of equations. The Tikhonov regularization method is employed for solving this system of equations. Determination of regularization parameter is based on L-curve technique. The numerical results demonstrate the accuracy and ability of this method.  相似文献   

17.
An inverse problem in static thermo-elasticity is investigated. The aim is to reconstruct the unspecified boundary data, as well as the temperature and displacement inside a body from over-specified boundary data measured on an accessible portion of its boundary. The problem is linear but ill-posed. The uniqueness of the solution is established but the continuous dependence on the input data is violated. In order to reconstruct a stable and accurate solution, the method of fundamental solutions is combined with Tikhonov regularization where the regularization parameter is selected based on the L-curve criterion. Numerical results are presented in both two and three dimensions showing the feasibility and ease of implementation of the proposed technique.  相似文献   

18.
Only the left-boundary data of temperature and heat flux are used to estimate an unknown parameter function α(x) in Tt(x,t) = ∂(α(x)Tx)/∂x + h(x,t), as well as to recover the right-boundary data. When α(x) is given the above problem is a well-known inverse heat conduction problem (IHCP). This paper solves a mixed-type inverse problem as a combination of the IHCP and the problem of parameter identification, without needing to assume a function form of α(x) a priori, and without measuring extra data as those used by other methods. We use the one-step Lie-Group Adaptive Method (LGAM) for the semi-discretizations of heat conduction equation, respectively, in time domain and spatial domain to derive algebraic equations, which are used to solve α(x) through a few iterations. To test the stability of the present LGAM we also add a random noise in the initial data. When α(x) is identified, a sideways approach is employed to recover the unknown boundary data. The convergence speed and accuracy are examined by numerical examples.  相似文献   

19.
We investigate two algorithms involving the relaxation of either the given Dirichlet data (boundary temperatures) or the prescribed Neumann data (normal heat fluxes) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [26] applied to two-dimensional steady-state heat conduction Cauchy problems, i.e. Cauchy problems for the Laplace equation. The two mixed, well-posed and direct problems corresponding to each iteration of the numerical procedure are solved using a meshless method, namely the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the Laplace operator in various two-dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method.  相似文献   

20.
We investigate an application of the method of fundamental solutions (MFS) to the time-dependent two-dimensional Cauchy heat conduction problem, which is an inverse ill-posed problem. Data in the form of the solution and its normal derivative is given on a part of the boundary and no data is prescribed on the remaining part of the boundary of the solution domain. To generate a numerical approximation we generalize the work for the stationary case in Marin (2011) [23] to the time-dependent setting building on the MFS proposed in Johansson and Lesnic (2008) [15], for the one-dimensional heat conduction problem. We incorporate Tikhonov regularization to obtain stable results. The proposed approach is flexible and can be adjusted rather easily to various solution domains and data. An additional advantage is that the initial data does not need to be known a priori, but can be reconstructed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号