首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear low‐density polyethylene (LLDPE), based on butene‐1 or hexene‐1, was irradiated with γ‐rays under vacuum or in the presence of air. The study focused on the influence of the dose rate and the γ‐dose on the thermal properties of LLDPE. Differential scanning calorimetry, thermogravimetric analysis (TGA), and TGA/FTIR techniques were used to address the thermal behavior as a result of γ‐irradiation. During this irradiation, competition between crosslinking and scission reactions, subsequent to oxidation reactions, occurred in the polymeric material, which strongly depends on the experimental conditions. A decrease of the crystallinity for γ‐irradiated samples was observed in particular for samples irradiated under vacuum. This observation may be explained by increased hindrance of segment mobility due to crosslinking reactions that prevent crystal growth. TGA investigations revealed an enhancement of the thermal stability for samples irradiated under vacuum but not for those irradiated in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2790–2795, 2006  相似文献   

2.
The influence of γ irradiation on the dielectric and physicochemical properties of polyethylene‐octene elastomer (POE) containing 120 phr aluminum hydroxide (Al(OH)3) as fillers has been investigated. The dielectric properties of the γ‐irradiated POE highly filled with Al(OH)3 have been measured over a wide range of frequencies (70 kHz–3 MHz). It was found that γ irradiation strongly influences the dielectric properties of the POE composite in the dose range 0–250 kGy. POLYM. ENG. SCI. 46:1721–1727, 2006. © 2006 Society of Plastics Engineers  相似文献   

3.
Ultrahigh molecular weight polyethylene has been irradiated using a cobalt 60 source to give received dose between zeor and 50 Mrad. Irradiacted specimens were subjected to tensile characterization, dynamic mechanical analysis, and differential scanning calorimetry. Changes in tensile and dynamic mechnaical properties following irradiation arise from both molecular rearrangement and from increased crystallinity following scissionof long interlamella tie chains. The effects of post-irradiation aging on mechanical properties are associated with increasing crystallinity resulting from decomposition of metastable groups formed in the amorphous region during irradiation. Irradiated materials have been subject to sinusoidal stressing between 0.275 and 0.55 of yield stress for 100,000 cycies, and changes in mechnaical and physical properties measured. Increased resistance to creep during stressing was observed with the irradiated materials, behavior which is consistent with previsouly observed changes in crystallinity and crosslink density. Overall property changes measured following stressing were small compared with those induced by the initial irradiation.  相似文献   

4.
The effect of 60Co γ-radiation on the tensile properties of thermoplastic elastomer blends of natural rubber (NR) and high-density polyethylene (HDPE) has been investigated. The samples were irradiated to absorbed doses ranging from 0.1 to 100 Mrad in air at room temperature (25°C) at a dose rate of 0.21 Mrad/hr. The effect of blend ratio and addition of carbon black (N 330) dicumyl peroxide (DCP) on the radiation resistance of the blends has also been studied. High energy radiation at a high dose rate was found to cause extensive crosslinking in the bulk, which in effect, caused a minima in the ultimate tensile strength in the range of 10–25 Mrad and a continuous decline in the elongation at break in all the blends. Chain scission, on the other hand, was restricted to the surface under the above-mentioned experimental conditions. This contention was substantiated by the results of irradiation of the samples in a nitrogen environment. Scanning electron microscopy (SEM) studies on the tensile fracture surface morphology of the blends have also been undertaken in order to gain insight to the mechanism of failure.  相似文献   

5.
Low viscosity carboxymethyl corn starch was prepared by the reaction of γ‐irradiated starch with monochloroacetic acid in the presence of alkali. It was found that irradiation dose influences the product viscosity remarkably. The viscosity decreases as the irradiation dose level increases; however, the viscosity increases with the increasing dose rate and the degree of substitution (DS). γ‐Irradiation can activate the starch to react with monochloroacetic acid, and the more of the irradiation dose, the higher of the DS and the reaction efficiency. The product has the character of low viscosity at high concentration, and the more of the irradiation dose, the more similar of the rheological behavior to a Newtonian liquid. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2210–2215, 2006  相似文献   

6.
For medical applications, 4,4′‐dicyclohexyl methane diisocyanate (HMDI)‐based poly(carbonate urethane)s were synthesized from HMDI and 1,4‐butanediol as hard segments and poly(carbonate diol) (number‐average molecular weight = 2000 g/mol) as soft segments. The effects of wide‐range γ irradiation on the samples were examined through a series of analytical techniques. Scanning electron microscopy revealed that γ irradiation etched and roughened the surfaces of the irradiated samples. The gel content and crosslinking density measurements confirmed that crosslinking occurred along with degradation at all of the investigated irradiation doses and the degree of both crosslinking and degradation increased with increasing irradiation dose. Fourier transform infrared spectroscopy demonstrated that chain scission in the γ‐irradiated samples occurred at the carbonate and urethane bonds. The decreasing molecular weight and tensile strength indicated that the degradation increased with the γ‐irradiation dose. Differential scanning calorimetry and dynamic mechanical thermal analysis indicated that γ irradiation had no significant effect on the phase‐separation structures. There was a slight reduction in the contact angle. An evaluation of the cytotoxicity demonstrated the nontoxicity of the nonirradiated and irradiated polyurethanes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41049.  相似文献   

7.
The effects of γ‐radiation on a low‐density polyethylene (LDPE) were investigated by novel techniques, such as crystallization analysis fractionation and preparative fractionation, to analyze and compare their performance with other analytical procedures such as DSC, FTIR, and GPC. The LDPE was thus irradiated with four different doses of γ‐radiation. Different fractions were obtained from these irradiated materials by preparative fractionation, which were characterized by the above‐mentioned analysis techniques. The changes in the morphology and chemical structure of LDPE after the irradiation were analyzed and it was found that both oxidative scission and crosslinking are phenomena related to the exposure of LDPE at high‐energy radiation. Crystallization analysis fractionation and preparative fractionation proved to be suitable techniques to characterize the effects of γ‐radiation on a low‐density polyethylene material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1803–1814, 2004  相似文献   

8.
A study has been made of the diffusion, solubility, and separation of nitrogen and methane gases in a series of air-and vacuum-irradiated polyethylene films in the temperature range of 15° to 50°C. Samples were air irradiated to 90 Mrads and vacuum irradiated to 80 Mrads. The major structural differences between the modified films were the presence of oxygenated species in the air-irradiated samples. The oxidation of these samples reduced the amount of crosslinking normally found in vacuum-irradiated samples. Diffusion and permeability coefficients for both gases decreased with irradiation dose. The solubility coefficients for the air-irradiated samples increased with increasing irradiation dose while little change was observed for vacuum-irradiated film. The gas mixture permeabilities could be predicted from the pure component permeabilities, and the methane–nitrogen separation factor decreased with increasing irradiation dose.  相似文献   

9.
Scrap poly(tetrafluoroethylene) (PTFE) was γ irradiated under an ambient atmosphere in order to produce extensive chain scission and oxidative degradation. After irradiation the PTFE was ground into a fine powder (2°‐PTFE) and grafted with styrene (St), vinyl acetate (VAc), and 4‐vinylpyridine (4‐VP) by using the direct irradiation technique. The grafted PTFE were then blended with low density polyethylene (LDPE). The study covered the characterization of irradiated PTFE and grafted 2°‐PTFE powder with various methods. Mechanical grinding was found to reduce trapped radicals formed during the irradiation process faster than the annealing process. Grafting on 2°‐PTFE was followed by gravimetric analysis, TGA, and the change in the particle size of the samples. Although we reached almost 20% grafting by weight in the St and 4‐VP monomers, VAc grafting was found to be maximum at around 8% by weight at the maximum absorbed dose. The addition of VAc grafted 2°‐PTFE into LDPE produced better final mechanical properties with a fine dispersion. However, as may be expected, the incorporation of the other two 2°‐PTFEs into LDPE showed low film quality and poor mechanical properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 816–826, 2001  相似文献   

10.
Chemiluminescence (CL) analysis was used for determining the oxidation layer formed by the irradiation of polypropylene for medical supplies. The depth of the oxidation layer from the surface depended on dose rate and increased with decreasing dose rate. The oxidation occurred remarkably at a region near the surface area of the film where the diffusion of oxygen is more sufficient. On the contrary, there was very little oxidation in the interior portion. The oxidation layers of polypropylene samples irradiated with electron beam showed U-shaped profiles in the cross-section of film as did as a sample irradiated with γ-rays. However, the degree of oxidation by irradiation with electron beam was very small; CL intensity at the surface area was only one-third that for the γ-irradiated samples.  相似文献   

11.
Nonvolatile products have been identified that arise through γ-irradiation in isotactic polypropylene by Fourier transform infrared (FTIR) analysis. The γ-irradiation was performed in the air with doses varying between 20 and 1200 kGy, for a dose rate of 800 Gy/h. The contour lines of FTIR absorption bands of carbonyl groups at different region of the cross section of an irradiated sample have been determined. The carbonyl groups arise from the concentration of esters or ketones, carboxylic acids, and γ-lactones, but their structure is different for different doses. We have also investigated the degradation of irradiated polypropylene by using FTIR mappings. Dust particles of irradiated brittle polypropylene have also been studied. The gel fraction has been determined for different doses of irradiation, and the relation between the moment of the appearance of the gel and disappearance of the carbonyl groups has been made evident. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
In relation to sterilization of medical supplies, the degree of degradation by γ-ray and electron beam irradiations of homopolypropylene (HP), copolypropylene (CP, coplymer including 6% of ethylene unit) and polymethylpentene were compared, and chemiluminescence (CL) of irradiated polymers were measured. HP degraded extremely around the sterilization dose (2.5 Mrad) by either γ-ray or electron beam irradiations. In the case of CP and polymethylpentene, stabilities of polymers far differed between γ-ray and electron beam irradiations. The polymethylpentene was more stable than the polypropylenes against irradiation. The counts of CL emitted by recombination of peroxy radical (ROO ·) increased with increasing dose, reflecting degrees of oxidation of polymers. The degradation of polymers was independent of irradiation sources, rather it depended on the degree of oxidation. It was found that CL analysis are favorable for estimation of degradation in irradiated polymers.  相似文献   

13.
Poly(vinyl alcohol)/poly(ethylene glycol) (PVA/PEG) copolymer was prepared using casting technique. The obtained PVA/PEG thin films have been irradiated with gamma rays with doses ranging from 1.5 to 20 Gy. The resultant effect of gamma irradiation on the thermal properties of PVA/PEG has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The onset temperature of decomposition To and activation energy of thermal decomposition Ea were calculated, results indicating that the PVA/PEG thin film decomposes in one main weight loss stage. Also, the gamma irradiation in dose range 4–12 Gy led to a more compact structure of PVA/PEG copolymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with gamma dose has been determined using DTA. The PVA/PEG thermograms were characterized by the appearance of an endothermic peak due to melting of crystalline phase. In addition, structural property studies using X‐ray diffraction and infrared spectroscopy were performed on both nonirradiated and irradiated samples. Furthermore, the transmission of the PVA/PEG samples and any color changes were studied. The color intensity (E was greatly increased with increasing the gamma dose and was accompanied by a significant increase in the blue and green color components. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Improvement of processability of Poly(ε‐caprolactone) (PCL) was achieved by introduction of a branch structure using gamma‐irradiation from a 60Co source. Irradiated PCL has higher molecular weight by producting a branch structure. Hence, the irradiation at a lower dose, such as 3 Mrad, leads to a higher melt viscosity. The branched structure gave improved properties for dynamic viscoelasticity and elongational viscosity. High elongational viscosity was observed by entanglement due to branch chain formed during irradiation, and the elongational viscosity for 3 Mrad is higher than 1.5 Mrad. Due to a higher elongational viscosity, PCL foam can be produced by a molding process. Foam produced from irradiated PCL pellets at 3 Mrad has honeycomb‐like structure, and the foam showed higher enzymatic degradation compared to film samples. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1815–1820, 1999  相似文献   

15.
The effect of temperature over the range ?196 to 150°C on the crosslinking of polyethylenes irradiated by electron beam has been investigated on the basis of gel content determination and Fourier transform infra-red (FTIR) spectroscopy. The crosslinking efficiency increases significantly with increasing irradiation does and at elevated irradiation temperature. The crosslinking rates of high density polyethylene (HDPE) and low density polyethylene (LDPE) samples above the melting point (TM) are much higher than those below Tm. The FTIR data give positive evidence: (i) that trans-vinylene double bonds in cross linked HDPE and LDPE samples increase with increasing irradiation dose temperature (ii) that vinyl double bonds in HDPE decrease rapidly with increasing irradiation dose and temperature, and (iii) vinylidene groups in LDPE decrease slowly with increasing temperature at the lower dose and are almost independent of the irradiation temperature at above room temperature and the higher dose of more than 100 kGy. Gas bubbles are observed in LDPE samples irradiated at 100 and 150°C with high dose (200 to 250 kGy). The size of the bubbles increases gradually at high temperatures.  相似文献   

16.
We conducted this study to examine the changes in the molecular structure and physiological activities of silk sericin after γ irradiation. Sericin from Bombyx mori was extracted with an Na2CO3 solution. The molecular weight distribution of sericin increased in the gel permeation chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis results as the irradiation dose increased. Circular dichroism data also revealed that the α‐helix contents decreased with the irradiation dose. Ultraviolet absorption was shown a different pattern between the irradiated and unirradiated sericin. However, the Fourier transform infrared spectrum was not changed in all of the groups. Furthermore, the irradiated sericin was significantly increased in 2,2‐diphenyl‐1‐picryl‐hydrazil radical scavenging, and the tyrosinase inhibitory activities increased with irradiation dose. Therefore, γ irradiation was an effective method for producing high‐molecular‐weight sericin and for developing functional foods and cosmetics. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
对彩妆化妆品(粉底和眼影)经辐照后的光致发光和热释光特性进行了研究和测量。试验发现辐照后的彩妆样品的光致发光和热释光值均有变化,可用于辐照鉴定。光致发光方法简单快速,适用于辐照彩妆化妆品的筛选鉴定,热释光法适用于辐照彩妆化妆品的确证鉴定。  相似文献   

18.
γ‐Irradiated films could provoke unexpected interaction with proteins for instance just after irradiation and not necessarily after 12 months indicating there is no more reactive species. The optical properties of two multilayer films [polyethylene (PE)/ethylene vinyl alcohol (EVOH)/PE and ethylene vinyl acetate (EVA)/EVOH/EVA] after different γ‐irradiation doses is then studied in this work. The investigation on these films, either non‐irradiated or γ‐irradiated (up to 270 kGy), is performed by colorimetry measurement over time (up to 12 months) to assess the generation of new species inside the materials. The color change is directly correlated with absorbed γ‐doses. Over time, the color decreases and goes back to its initial time level. This discoloration evolution could be therefore used as an indication of the completion of the generated species reactions induced by γ‐irradiation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46114.  相似文献   

19.
Crosslinking of homemade low‐density polyethylene (LDPE) was performed by electron‐beam (EB) irradiation. The gel content of the EB‐exposed LDPE was determined by the solvent‐extraction method. The degree of crosslinking was also evaluated by a hot set measuring test. The results obtained from both the gel–sol and the hot set methods showed that the degree of crosslinking was dependent on the deposited energy in LDPE samples. Increasing the absorbed dose increased the degree of network formation. The LDPE with higher molecular weight yielded higher efficiency of crosslinking at the same irradiation dose. The effect of irradiation dose on the molecular weight between crosslinks (Mc), glass‐transition temperature, and free volume were calculated. Mechanical test results showed that the tensile strength of the samples increased with increase in the irradiation dose up to 150 kGy and then slightly decreased with further increasing the deposited energy. The elongation at break decreased with increasing the absorbed dose. The results obtained from differential scanning calorimetry exhibited a small reduction in the melting point and the degree of crystallinity of the EB‐exposed LDPE samples compared to those of the untreated samples. The effect of crosslinking on the electrical properties of the irradiated samples was insignificant. The dielectric constant of the treated samples remained nearly constant within the irradiation dose range, although the dissipation factor increased slightly with increasing the absorbed dose. The results obtained from characterizing the EB‐induced crosslinking of homemade polyethylene, including LH0030 and LH0075, showed the higher molecular weight polyethylene (LH0030) as a preferred option for wire and cable insulation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1959–1969, 2002  相似文献   

20.
Research has been devoted to the desalination of saline water to fresh water suitable for human demands because of the shortage of water in some countries. Therefore, in this study, reverse‐osmosis membranes were prepared via the γ‐radiation graft copolymerization of acrylic acid onto high‐density and low‐density polyethylene. The factors that could affect the grafting process, such as the solvent type, monomer and inhibitor concentration, and irradiation dose, were investigated to determine the optimum conditions for radiation grafting. The polyethylene grafted acrylic acid copolymers (PAAc‐g‐PE) graft copolymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical, rheological, and thermal property testing to illustrate the possibility of practical use in water desalination. The prepared grafted membranes showed significant results in the reverse‐osmosis desalination method with underground saline water. The factors affecting the desalination of water, such as the water flux, operation time, and grafting percentage, were studied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45410.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号