首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hysteresis loss of natural rubber (NR) and styrene–butadiene rubber (SBR) vulcanizates having variations of loading of carbon black, silica, clay, resin, and curatives has been measured over a wide range of strain rates and temperatures as well as under swollen conditions. Hysteresis loss increases with an increase in strain rate, filler loading, resin loading (at high rates), crosslink density, and strain level. Hysteresis decreases with an increase in temperature, particle diameter of filler, and resin loading at high testing temperature. All the data of hysteresis loss of filled NR and SBR compounds have been found to be superimposable on single master curves with the help of the WLF shift factor. The master curves can be divided into three regions. The slope of the intermediate region, Δlog(hysteresis)/Δlog(RaT) has been found to be 0.1 for almost all the vulcanizates. Similar master plots have been obtained when the hysteresis loss has been measured at higher cycles and higher extensions and also by using the data of the hysteresis loss ratio. The hysteresis loss ratio of all the vulcanizates follows a similar trend, except for the highly crosslinked system, which shows a lower value. Carbon black contributes significantly to the hysteresis loss even when the energy dissipation is minimized by swelling. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1429–1439, 1997  相似文献   

2.
The results of equilibrium stress–strain and swelling experiments are reported for styrene–butadiene copolymers of varying crosslink density and varying butadiene microstructure. The orientation of polymer chains is investigated under uniaxial elongation by birefringence and infrared dichroism spectroscopies which probe orientation on a segmental scale. © 2000 Society of Chemical Industry  相似文献   

3.
The comparative study of the continuous ultrasonic devulcanization of various unfilled rubbers [natural rubber, styrene–butadiene rubber (SBR), ethylene–propylene–diene rubber (EPDM)] is carried out by means of a ultrasonic reactor. The power consumption, gel fraction, crosslink density, cure behavior, and physical properties of devulcanized rubbers were measured. The glass transition temperatures of virgin, vulcanized, and devulcanized rubbers were determined in order to characterize the difference in the mobility of rubber molecules for each rubber before and after devulcanization. Thermogravimetric analysis was also used to determine thermal stability of the various rubbers. A unique correlation between gel fraction and crosslink density indicated significant differences in the efficiency of devulcanization of various rubbers. Under certain devulcanization conditions, the mechanical properties of revulcanized SBR and EPDM rubbers were found to improve compared to those of the original rubbers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 434–441, 2003  相似文献   

4.
Proton spin–lattice relaxation time t1 was measured on SBR samples with carbon black or kaolin filler using modified linseed oil. The NMR pulse technique at 90MHz was used in the temperature range from 180 to 400 K. The temperature dependence of t1 indicates that samples filled with carbon black have similar molecular dynamics to the standard unfilled SBR samples. The activation energy for the motion of the main chain for these samples amounts to 16.4kJ/mol. Samples containing linseed oil modified with para-toluidine showed an activation energy of about 14.6kJ/mol and were not affected by γ-irradiation. Values of the minimum relaxation time tmin1 were increased by γ-irradiation in comparison with a standard SBR sample. ESR measurements carried out at room temperature by means of an X-band spectrometer indicated that unidentified radicals within the rubber were formed during its mastication with vulcanizing additives. The ESR spectra did not change during the vulcanization process. Samples filled with carbon black showed a broadening of the ESR line; this is consistent with the increase in the electrical conductivity.  相似文献   

5.
The pyrolysis kinetics of commercial-grade styrene–butadiene rubber (SBR), which is one of the major constituents of tyre rubber as well as one of the principal products of the rubber industry in Taiwan, was investigated by a dynamic thermogravimetry (TG) reaction system in a nitrogen atmosphere over the temperature range of 400 to 950 K at the nominal heating rates of 3, 5 and 7 K min−1. The experimental results indicated that the pyrolysis of SBR may be attributed to three reactions, with three distinct mass change characteristics in the mass-loss curves of reactant deduced from the experiments. The corresponding activation energies, frequency factors and reaction orders of the three reactions were determined. A simplified three-reaction model based on the mass-loss curves of reactant was also proposed for engineering purposes. Satisfactory agreements between the proposed model and the experimental results were obtained. The results of this study are useful for the utilization of scrap SBR as an energy resource.  相似文献   

6.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

7.
Several styrene–butadiene rubber (SBR) compounds were prepared with different cure systems based on sulfur and TBBS (Nt‐butyl‐2‐benzothiazole sulfenamide), varying the amount of sulfur and accelerator between 0.5 and 2.5 phr in the formulation. Torque curves, measured with a moving die rheometer at temperatures at 433 K, were used to characterize the vulcanization. The time to achieve the maximum torque, t100%, was evaluated for each sample, and this time was set to vulcanize sheets at 433 K. The density and type of elastically active crosslinks of each cured sample were evaluated by means of swelling measurements and were related to the vulcanizing system. Finally, the rheometer data were analyzed considering the network structure formed during vulcanization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1105–1112, 2007  相似文献   

8.
The effect of filler loading on the cure time (t90) and swelling behaviour of SMR L/ENR 25 and SMR L/SBR blends has been studied. Carbon black (N330), silica (Vulcasil C) and calcium carbonate were used as fillers and the loading range was from 0 to 40 phr. Results show that for SMR L/ENR 25 blends the cure time decreases with increasing carbon black loading, whereas silica shows an increasing trend, and calcium carbonate does not show significant changes. For SMR L/SBR blends, the cure time of carbon black, silica and calcium carbonate generally decreases with increasing filler loading. The percentage swelling in toluene and ASTM oil no 3 decreases for both blends with increasing filler loading, with calcium carbonate giving the highest value, followed by silica‐ and carbon black‐filled blends. At a fixed filler loading, SMR L/ENR 25 blend shows a lower percentage swelling than SMR L/SBR blends. © 2003 Society of Chemical Industry  相似文献   

9.
Dichlorocarbene-modified styrene–butadiene rubber (SBR) prepared by the alkaline hydrolysis of chloroform using cetyltrimethylammonium bromide as a phase-transfer agent resulted in a product that showed good mechanical properties, excellent flame resistance, solvent resistance, and good thermal stability. The activation energy for this chemical reaction calculated from the time–temperature data on the chemical reaction by the measurement of the percentage of chlorine indicated that the reaction proceeded according to first-order kinetics. The molecular weight of the polymers, determined by gel permeation chromatography, showed that chemical modification was accompanied by an increase in molecular weight. The chemical modification was characterized by proton NMR, FTIR studies, thermogravimetric analysis, and flammability measurement. Proton NMR and FTIR studies revealed the attachment of chlorine through cyclopropyl rings to the double bond of butadiene. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 153–160, 1998  相似文献   

10.
Synthetic calcium silicate, pretreated with various quantities of organofunctional silane (Si-69®)-based coupling agents, has been investigated in a compound based on styrene–butadiene rubber. The properties of the rubber compound with untreated synthetic calcium silicate and those observed after direct addition of an adequate quantity of Si-69® during the mixing period have been compared.  相似文献   

11.
The elastomers of polyvinyl alcohol gel were made from the polyvinyl alcohol polymer, with boric acid added as a crosslinking agent, in the mixed solvent of dimethyl sulfoxide and water. From the experimental results, the viscosity of polyvinyl alcohol solution is found to increase not only with an increment of boric acid content, but also with the temperature in the range of 70°C ∼ 100°C, although the viscosity is decreased in the range of 30°C ∼ 70°C. Moreover, the molecular mass between junctions of polyvinyl alcohol gel is calculated from the rubber elastic theory and found to be decreased with the increment of boric acid content. We also evaluated the values of Young's modulus of polyvinyl alcohol gel, E, E*, and the elastic parameters C1 and C2 of the Mooney‐Rivlin equation, according to Hook's law and theory of rubber elasticity. Based on these, the polyvinyl alcohol gel behaves as a good rubberlike elastic property. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3046–3052, 1999  相似文献   

12.
Accurate modeling of large rubber deformations is now possible with finite‐element codes. Many of these codes have certain strain‐energy functions built‐in, but it can be difficult to get the relevant material parameters and the behavior of the different built‐in functions have not been seriously evaluated. In this article, we show the benefits of assuming a Valanis–Landel (VL) form for the strain‐energy function and demonstrate how this function can be used to enlarge the data set available to fit a polynomial expansion of the strain‐energy function. Specifically, we show that in the ABAQUS finite‐element code the Ogden strain‐energy density function, which is a special form of the VL function, can be used to provide a planar stress–strain data set even though the underlying data used to determine the constants in the strain‐energy function include only uniaxial data. Importantly, the polynomial strain‐energy density function, when fit to the uniaxial data set alone, does not give the same planar stress–strain behavior as that predicted from the VL or Ogden models. However, the polynomial form does give the same planar response when the VL‐generated planar data are added to the uniaxial data set and fit with the polynomial strain‐energy function. This shows how the VL function can provide a reasonable means of estimating the three‐dimensional strain‐energy density function when only uniaxial data are available. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 837–848, 2001  相似文献   

13.
Photografting reaction onto styrene–butadiene rubber (SBR) as a function of monomer concentration, grafting method, irradiation time, and the carbon black content has been studied using ultraviolet (UV). Glycidyl methacrylate and benzophenone are used as monomer and initiator, respectively. The occurrence of graft reaction onto SBR surface is identified by infrared attenuated total reflection (IR-ATR) analysis. The degree of monomer graft increases with monomer concentration and tends to level off at high monomer concentration (>8.3M/L). Graft ratio also increases with UV irradiation time. Carbon black content is found as one of important factors that determine the monomer graft efficiency. The amount of monomer graft onto SBR decreases with increasing carbon black content and it is attributed to the reduction of irradiation absorbance due to the presence of carbon black. The occurrence of reaction between glycidyl methacrylate grafted SBR and nylon-6 via melt phase reaction is also identified using IR-ATR analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1733–1739, 1999  相似文献   

14.
The potential application of lignin biopolymer as a component of styrene–butadiene rubber was examined with regard to its ability to reinforce the vulcanizates. It was shown that the sulfur‐free lignin preparation improved physicomechanical properties of rubber. The determination of the coefficient of lignin activity confirmed that lignin acts as an active filler. FTIR characteristics of lignin isolated from the vulcanizate containing 20 phr lignin indicated its interaction with the sulfur system, resulting in formation of noncyclic sulfide structures. In the case of higher lignin amount in the vulcanizate, some interfacial interaction between lignin and SBR may occur. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 924–929, 2005  相似文献   

15.
In the present work, the mechanical properties of poly(2‐hydroxyethyl methacrylate) (PHEMA) such as ultimate strength, ultimate strain and shear modulus under compression were measured. Mathematical models for hyperelastic materials, which are often used to study rubbers or tyres and include the Mooney–Rivlin and neo‐Hookean models, were also used to theoretically analyse mechanical nonlinear behaviour of the hydrogel. The simulations based on these models were then implemented and validated by analysis with experimental data for comparison. The accuracy of simulations using the two models was subsequently assessed and discussed in order to determine which model is a feasible representation and reflection of the true behaviour of the hydrogel. This study on the mechanical behaviour of PHEMA under compression stress will ultimately serve for optimization of the design and manufacture of multilayer microfluidic devices in terms of the distribution of pressure induced in the packaging process, since the implementation of thin PHEMA hydrogel free‐standing films is required to be incorporated with harder polymeric material components, such as thermoplastics or thermoset microfabricated platforms. © 2012 Society of Chemical Industry  相似文献   

16.
Vulcanizing reagent (VR) suspensions with different sulfur additions were mixed with CNTs suspensions and SBR latex, and then powder CNTs/SBR (PSBR) composites were prepared by spray‐drying process. Investigations showed that VR additions have significant influences on the properties of CNTs/PSBR composites. With the increment of VR additions, glass transition temperature (Tg) of the composites increased gradually, and reached the maximum when the sulfur addition was 4.0 phr, and then it would decrease if the sulfur addition continued to rise. The elongation at break of the vulcanizates decreased linearly. The tensile strength and hardness reached the maximum when the sulfur addition was 4.0 phr, and almost kept constant when the addition continued to rise. Yet the tear strength reached the maximum when the addition was of 2.5 phr, and then decreased slightly when the addition exceeded 4.0 phr, which was corresponding to the structure designability of the composites affected by the sulfur aggregates in the matrix. Under different temperatures, when the vulcanizing temperature was 150°C, the vulcanizing speed was proper, vulcanizing time was prolonged, and the vulcanizing security was intensified. Compared with the vulcanization of carbon black/PSBR composites, more sulfur additions are needed in the vulcanization of CNTs/PSBR composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
The graft copolymerization of styrene (ST) and methyl methacrylate (MMA) onto styrene–butadiene rubber (SBR) latex prepared by seeded emulsion polymerization has been studied under various reaction conditions using cumene hydroperoxide redox initiator. The mechanism of graft copolymerization has been investigated. The synthesized graft copolymers were purified and then characterized by proton nuclear magnetic resonance (1H NMR) analysis. A 2 2 fractional factorial experimental design was applied to study the effects of the process variables such as the amount of initiator and emulsifier, the presence or absence of chain‐transfer agent, ST to MMA ratio, monomer to rubber ratio, and reaction temperature on the grafting efficiency. The analysis of the results from the design showed the sequence of the main effect on the observed response of the grafting of ST and MMA onto SBR and that the amount of chain‐transfer agent had a significant effect. Transmission electron microscopy was used to study the morphology of the graft copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2867–2874, 2006  相似文献   

18.
A hydrogenated styrene–butadiene copolymer (HSBR) was prepared by a diimide reduction of SBR in the latex stage. The influence of the styrene content on various reaction parameters, namely, time, temperature, and concentration of the reactants and the catalyst was studied. A comparatively lower temperature, longer time, lesser amount of hydrogen peroxide, and higher amount of the catalyst are required to optimize the hydrogenation reactions of SBR with a higher styrene content. The diimide reduction of SBR is first order with respect to the olefinic substrate and the apparent activation energy increases with increase in the styrene level. All the hydrogenated copolymers were characterized with the help of IR, NMR, and DSC. The TGA data indicate a higher thermal stability of HSBR as compared to SBR in nitrogen, although an anomalous behavior is observed in air due to crosslinking and oxidation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1581–1595, 1999  相似文献   

19.
Four oil absorbents based on styrene–butadiene (SBR)—pure SBR (PS), 4‐tert‐butylstyrene–SBR (PBS), EPDM–SBR network (PES), and 4‐tert‐butylstyrene‐EPDM‐SBR (PBES)—were produced from crosslinking polymerization of uncured styrene–butadiene rubber (SBR), 4‐tert‐butylstyrene (tBS), and ethylene–propylene–diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a prepolymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with ASTM method F726‐81. The order of maximum oil absorbency was PBES > PBS > PES > PS. The maximum values of oil absorbency of PBES and PBS were 74.0 and 69.5 g/g, respectively. Gel fractions and swelling kinetic constants, however, had opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49.97 × 10?2 h?1. The gel strength parameter, S, the relaxation exponent, n, and the fractal dimension, df, of the crosslinked polymer at the pseudo‐critical gel state were determined from oscillatory shear measurements by a dynamic rheometer. The morphologies and light resistance properties of the crosslinked polymers were observed, respectively, with a scanning electron microscope (SEM) and a color difference meter.  相似文献   

20.
Hydrogenation of carboxylic styrene–butadiene rubber latex was carried out using hydrazine and hydrogen peroxide with ferrous sulfate as a catalyst without pressurized hydrogen and an organic solvent. A mixed inhibitor was used during hydrogenation to prevent gel formation. Various hydrogenation conditions were studied. Ferrous sulfate is better than is cupric sulfate as a catalyst. The hydrogenation degree can reach over 90%. The hydrogenated product was characterized by IR and DSC. The hydrogenated products behave as a thermoplastic elastomer with excellent thermooxidation resistance, due to the absence of most double bonds and the presence of crystalline domains of polyethylene segments formed by the hydrogenation of polybutadiene segments. Ionomers were obtained by neutralization of the hydrogenated product with metallic ions and characterized by IR, DSC, and TEM. The ionomers also behave as thermoplastic elastomers with mechanical properties better than those of the hydrogenated product without neutralization, due to the existence of ionic domains besides the crystalline domains. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1375–1384, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号