首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blends of isotatic polypropylene (iPP), ethylene-propylene diene rubber (EPDM), and nitrite rubber (NBR) were prepared using dimethylol phenolic resin as a crosslinking system. The dynamically crosslinked blends of iPP/EPDM/NBR showed superior thermal stability to that of virgin isotactic polypropylene (iPP). Dynamic crosslinking rendered the vulcanizate thermally more stable as compared to uncrosslinked blends, which can be attributed due to the variations in degree of crosslinking and degree of crystallinity.

Crystallization of iPP in the blends of iPP/EPDM/NBR was also studied through Temperature Modulated Differential Scanning Calorimetry (TMDSC). Other detailed analysis of endotherm peaks obtained after first and second melts in terms of heat of enthalpy, degree of undercooling, and degree of crystallinity were also evaluated. Various kinetic parameters were also determined. Degree of crosslinking increases the interfacial adhesion between the iPP and EPDM/NBR phases. Dimethylol phenolic resin used as a compatibilizer also enhanced the thermal stability of the iPP/EPDM/NBR blends.  相似文献   

2.
Blends of ethylene–propylene–diene rubber (EPDM) and low density polyethylene (PEid) or isotactic polypropylene (iPP) crosslinked by dicumyl peroxide (DCP) have been prepared. Their morphology, reactivity of the components and crystallinity have been studied. The blends are microheterogeneous. Both plastomers, but particularly iPP, decrease the crosslinking efficiency of EPDM by DCP. It was found that they also influence the mechanical properties of the blends. The effect of iPP is far more pronounced than that of PEId, because of an increase in crystalline phase content. iPP particles play a role as nuclei for propylene monomer units in EPDM, whereas PEId particles are solvated by the elastomer matrix.  相似文献   

3.
Polypropylene blends and composites with 5, 10, and 15 vol % of EPDM and 2, 4, and 6 vol % of untreated and treated wollastonite filler were examined by applying different techniques. Elastomeric ethylene/propylene/diene terpolymer (EPDM) component and wollastonite influenced the crystallization process of isotactic polypropylene (iPP) matrix in different ways. The nucleation of hexagonal β‐iPP, the increase of overall degree of crystallinity, and crystallite size of iPP were more strongly affected by wollastonite than the addition of EPDM was. Both ingredients also differently influenced the orientation of α‐form crystals in iPP matrix. Wollastonite increased the number of a*‐axis‐oriented α‐iPP lamellae plan parallel to the sample surface, whereas the addition of EPDM reoriented the lamellae. The orientation parameters of ternary composites exhibited intermediate values between those for binary systems because of the effects of both components. EPDM elastomer considerably affected well‐developed spherulitization of iPP, increasing the spherulite size. Contrary to EPDM, because of nucleating ability or crystal habit, wollastonite caused significantly smaller iPP spherulites. Small spherulites in ternary iPP/EPDM/wollastonite composites indicated that the wollastonite filler (even in smallest amounts) exclusively determined the morphology of ternary composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4072–4081, 2004  相似文献   

4.
A series of thermoplastic elastomers (TPEs) were prepared from a binary blend of ethylene propylene diene rubber (EPDM) and isotactic polypropylene (iPP) using different types of phase modifiers. The influence of sulphonated EPDM, maleated EPDM, styrene‐ethylene‐co‐butylene‐styrene block copolymer, maleated PP, and acrylated PP as phase modifiers showed improved physico‐mechanical properties (like maximum stress, elongation at break, moduli, and tension set). Scanning electron and atomic force microscopy studies revealed better morphologies obtained with these phase modified EPDM‐iPP blends. The dependence of the phase modifier type and concentration was optimized with respect to the improvement in physical properties and morphology of the blends. Physical properties, dynamic mechanical properties, and morphology of these blends were explained with the help of interaction parameter, melt viscosity, and crystallinity of the blends. Theoretical modeling showed that Kerner, Ishai‐Cohen, and Paul models predicted the right morphology–property correlation for the prepared TPEs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

5.
The miscibility of polymers is not only an important basis for selecting a proper blending method, but it is also one of the key factors in determining the morphology and properties of the blends. The miscibility between ethylene‐propylene‐diene terpolymer (EPDM) and polypropylene (PP) was explored by means of dynamic mechanical thermal analysis, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results showed that a decrease in the PP content and an increase of the crosslinking density of EPDM in the EPDM/PP blends caused the glass‐transition temperature peaks of EPDM to shift from a lower temperature to higher one, yet there was almost no variance in the glass‐transition temperature peaks of PP and the degree of crystallinity of PP decreased. It was observed that the blends prepared with different mixing equipment, such as a single‐screw extruder and an open mill, had different mechanical properties and blends prepared with the former had better mechanical properties than those prepared with the latter. The TEM micrographs revealed that the blends were composed of two phases: a bright, light PP phase and a dark EPDM phase. As the crosslinking degree of EPDM increased, the interface between the phases of EPDM and PP was less defined and the EPDM gradually dispersed in the PP phase became a continuous phase. The results indicated that EPDM and PP were both partially miscible. The mechanical properties of the blends had a lot to do with the blend morphology and the miscibility between the blend components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 315–322, 2002  相似文献   

6.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

7.
The influence of the interphase layer, formed by the introduction of an oil in ethylene–propylene rubber (EPR), on the structure and properties of isotactic polypropylene (iPP)/EPR blends was studied. The dispersity of the rubber phase in the iPP matrix did not depend on presence of oil. The melting temperature of iPP decreased with increasing content of oil‐extended EPR, and it did not change if the oil was absent. The compatibility parameter was determined from the dependency of the iPP melting point on the rubber content with the Nishi–Wang equation. A negative value of the parameter indicated a limited compatibility of iPP with oil‐extended EPR. The latter also reduced the temperature and heat of crystallization of iPP. The mechanical properties of iPP/EPR blends were investigated as functions of temperature and elongation rate. It appeared that elastic modulus and yield stress of the blends linearly depended on the logarithm of the elongation rate. Activation volumes, calculated with the Eyring equation, increased with increasing content of elastomer; moreover, this increase was more pronounced for the oil‐extended elastomer. It is suggested that the oil influenced the structure of the interphase layer and, accordingly, the characteristics of the iPP/EPR blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 249–257, 2003  相似文献   

8.
Blends of isotactic polypropylene (iPP) and polycarbonate (PC) with and without a compatibilizer were prepared using a Brabender Haake Rheocord at 260°C and 32 rpm. Maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) and maleic anhydride grafted ethylene–propylene diene (EPDM‐g‐MAH) were chosen as compatibilizers and their proportion was set to 5, 10, and 15 wt%, respectively. The thermal properties and crystallization behavior were determined by differential scanning calorimetry (DSC) and wide angle X‐ray scattering (WAXS). Micromechanical properties were also investigated using a Vickers microindentation tester. The DSC analysis indicates that the melting temperature of iPP in the all the blends, compatibilized and uncompatibilized ones, remains constant and is almost the same as those of the pure component. On the other hand, it is shown that the degree of crystallinity of iPP in the blends calculated by DSC and WAXS is dependent of the composition of the polymeric mixture. However the hardness (H) decreases with increasing PC content until the composition of iPP/PC (75/25) is reached, whereas for larger PC content values, H increases. The same trend was obtained with the addition of both compatibilizers. POLYM. ENG. SCI., 56:1138–1145, 2016. © 2016 Society of Plastics Engineers  相似文献   

9.
A comparative study of two ethylene‐propylene‐diene rubbers (EPDM) polymerized by both conventional (Ziegler–Natta catalysts) and new techniques (metallocene catalysts) is presented. For this purpose, thermoplastic elastomers based on isotactic polypropylene (iPP) and EPDM blends at different percentages were prepared and their properties examined. In particular, the processing behavior and mechanical properties are reported. So, the flow properties analyzed by torque value, melt index, and rheological study reveal that the blends containing EPDM synthesized by metallocene catalyst present a smaller viscosity, thus offering better processing behavior. On the other hand, the mechanical properties show that metallocene EPDM rubbers give rise to more elastic materials with a higher deformation at break and resilience as well as a lower compression set. Moreover, the effectiveness of these innovative EPDM rubbers as impact modifiers for PP is demonstrated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 25–37, 2002  相似文献   

10.
The structure, processing, morphology, and property relationships of biaxially drawn isotactic polypropylene (BOPP) film of mixed metallocene isotactic PP (m‐iPP) and Ziegler–Natta iPP (ZN‐iPP) homopolymer compositions are developed. The DSC and film drawing behavior show cocrystallization of the ZN‐iPP and m‐iPP components. The structure, processing, morphology, and property relations of ZN‐iPP/m‐iPP blends are compared with ZN‐iPP of varying isotacticities. The ZN‐iPP/m‐iPP blends exhibit reduced biaxial yield stress [σy(T)]. A fractional crystallinity model collapses the σy(T) data into a common normalized form over a range of draw temperatures, ZN‐iPP tacticities, and blend compositions. The simplified model is extended to define the interrelationships of yield activation and strain hardening behavior into regimes differentiated by characteristic draw stress (crystallinity) levels. Structure–property models are developed to explain the effect of draw temperature and resin–blend microstructure on the draw behavior, film stiffness, barrier, elongation, and synergies of the BOPP film processing–property balance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2400–2415, 2001  相似文献   

11.
Blends of isotactic polypropylene with amorphous and slightly crystalline ethylene-propylene-diene terpolymer (EPDM), prepared by solution blending, have been investigated by optical microscopy and differential scanning calorimetry. Nucleation and crystallization kinetic parameters, such as nucleation rates, nucleation half times, Avrami-exponents and spherulitic growth rates, have been determined. It has been found that the dispersion of crystalline EPDM in iPP is different from that of amorphous EPDM. Both EPDMs are incorporated into the spherulites, causing a decrease of the maximum growth rate of the iPP spherulites. The surface free energy of the iPP crystals is diminished on adding EPDM to iPP and is accompanied by a higher secondary nucleation rate. From the decrease observed in the Avrami exponent with increasing EPDM concentration in the blend, it has been concluded that nucleation becomes predominantly heterogeneous, as there is a proportional increase in the interfacial area between the two components.  相似文献   

12.
In this study, blends of metallocene short‐chain branched polyethylene (SCBPE) with low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), polystyrene (PS), ethylene–propylene–diene monomer (EPDM), and isotactic polypropylene (iPP) were prepared in weight proportions of 80 and 20, respectively. The crystallization behaviors of these blends were studied with polarized light microscopy (PLM) and differential scanning calorimetry. PLM showed that SCBPE/LDPE, SCBPE/HDPE, and SCBPE/EPDM formed band spherulites whose band widths and sizes were both smaller than that of pure SCBPE. No spherulites were observed, but tiny crystallites were observed in the completely immiscible SCBPE/PS, and the crystallites in SCBPE/iPP became smaller; only irregular spherulites were seen. The crystallization kinetics and mechanical properties of SCBPE were greatly affected by the second polyolefin but in different way, depending on the phase behavior and the moduli of the second components. SCBPE may be phase‐miscible in the melt with LDPE, HDPE, and EPDM but phase‐separated during crystallization. A big change in the crystal morphology and crystallization kinetics existed in the SCBPE/iPP blend. The mechanical properties of the blends were also researched with dynamic mechanical analysis (DMA). DMA results showed that the tensile modulus of the blends had nothing to do with the phase behavior but only depended on the modulus of the second component. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1816–1823;2005  相似文献   

13.
Ziegler–Natta isotactic polypropylene (ZN‐iPP) and metallocene isotactic polypropylene (m‐iPP) were extruded (in ratios of 75/25, 50/50, and 25/75) from one melt twin‐screw extruder to produce three ZN‐iPP/m‐iPP polyblended polymers and, subsequently, spin fibers. In this study, we examined the rheology of the ZN‐iPP/m‐iPP polyblended polymers and the thermal characteristics and crystallinity of the ZN‐iPP/m‐iPP polyblended fibers using gel permeation chromatography, rheometry, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, density gradient analysis, and extension stress–strain measurement. The apparent melt viscosity of the ZN‐iPP/m‐iPP polyblended polymers revealed positive‐deviation blends. The 50/50 blend of ZN‐iPP/m‐iPP had the highest apparent melt viscosity. For five samples, the complex melt viscosity decreased with the angular frequency, which represented typical non‐Newtonian behavior. The Cole–Cole plot, which consisted of the imaginary part of the complex melt viscosity versus the real part of the complex melt viscosity plot, of the ZN‐iPP/m‐iPP polyblended polymers showed a semicircular relationship with the blend ratios. It indicated that the ZN‐iPP/m‐iPP polyblended polymers were miscible. We analyzed the shear modulus data (G′ vs G″) by plotting them on a log–log scale. The plot revealed almost the same slopes for the ZN‐iPP/m‐iPP polyblended polymers, which indicated a good miscibility between the ZN‐iPP and m‐iPP polymers. The experimental DSC results demonstrate that the ZN‐iPP and m‐iPP polymers constituted a miscible system. The crystallinity and tenacity of the ZN‐iPP/m‐iPP polyblended fibers initially increased and then fell as the m‐iPP content increased. Meanwhile, the 50/50 blend of ZN‐iPP/m‐iPP had the highest crystallinity and tenacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   

15.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
The origins of elasticity in thermoplastic vulcanizates have been debated for the past decade. Previous modeling attempts provide numerical solutions that make assessment of constituent concentration and interaction unclear. A microcellular modeling approach is proposed and evaluated herein to describe the steady‐state behavior of dynamically vulcanized blends of ethylene‐propylene‐diene monomer (EPDM) and isotactic polypropylene (iPP). This approach provides an analytic result including terms for composition and cure state. Three types of deformation are accounted for: elastic and plastic deformation of iPP, elastic deformation of EPDM, and localized elastic and plastic rotation about iPP junction points. The viability of the constitutive model is evaluated in terms of iPP concentration and EPDM cure state.  相似文献   

17.
Aspects of the molecular weight and its distribution, the branching of low‐density polyethylene (LDPE), and the molecular composition of the ethylene–propylene–diene rubber (EPDM) matrix are presented in this article in terms of their influence on the surface segregation of polyethylene (PE) in elastomer/plastomer blends. All of the PEs studied, despite different weight‐average molecular weights and degrees of branching, segregated to the surface of the LDPE/EPDM blends. Atomic force microscopy pictures demonstrated defective crystalline structures on the surface of the blends, which together with a decrease in the degrees of their bulk crystallinity and a simultaneous increase in their melting temperatures, pointed to a low molecular weight and a defective fraction of PE taking part in the surface segregation. The extent of segregation depended on the molecular structure of the EPDM matrix, which determined the miscibility of the components on a segmental level. The higher the ethylene monomer content in EPDM was, the lower was the PE content in the surface layer of the blends. The composition and structure of the surface layer was responsible for its lower hardness in comparison with the bulk of the blends studied. The surface gradient of the mechanical properties depended on the physicochemical characteristics of the components and the blend composition, which created the possibility of tailoring the LDPE/EPDM blends to dedicated applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 625–633, 2006  相似文献   

18.
Ethylene‐propylene diene rubber (EPDM) and isotactic polypropylene (iPP) blends have widest industrial applications that require a degree of flame retardancy. Halogen‐free intumescent technology based on phosphorous salt is a significantly advanced approach to make the polymer flame‐retardant. Both ammonium polyphosphate and ethylenediamine phosphate are important intumescent compounds. Their combination with carbonific and spumific agents were studied in binary blends of EPDM/PP. The polymer system was vulcanized online during melt mixing. Intumescent flame‐retardant polymer systems exhibit good flame‐retardancy with optimum comparable physiomechanical, electrical, and fluid resistance properties, including lower smoke emission, which is essential to protect people because the visibility remains unaffected in the event of fire. Pronounced charring and intumescent effect appear to enhance the flame‐retardancy of the polymers. Possible expected intumescent mechanism is proposed based on the nonpyrolysis mechanism for the flame‐retarded polymer and the intumescent components. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 407–415, 2004  相似文献   

19.
聚丙烯/三元乙丙橡胶共混体系的研究   总被引:3,自引:0,他引:3  
研究了三元乙丙橡胶(EPDM)对聚丙烯(PP)结晶行为的影响以及PP/EPDM共混物的形态与性能的关系。EPDM对PP的熔点、结晶温度无明显影响,PP/EPDM共混物的结晶度随EPDM组份含量的增加而降低,适量的EPDM可使PP的晶体尺寸减小,晶胞参数与组份比无关。当EPDM用量为30%~40%时,共混物的冲击强度迅速提高。  相似文献   

20.
The effects of ultrasonic irradiation on extrusion processing and mechanical properties of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) blends are examined. Results show that appropriate irradiation intensity can prominently decrease die pressure and apparent viscosity of the melt, increase output, as well as increase toughness of PP/EPDM blends without harming rigidity. In case the blends are extruded with ultrasonic irradiation twice, the impact strength of the blend rises sharply at 50–100 W ultrasonic intensity, and amounts to more than 900 J/m, 1.5 times as high as that of blend without ultrasonic irradiation. Scanning electron microscopy observation shows that with ultrasonic irradiation, morphology of uniform dispersed EPDM phase and good adhesion between EPDM and PP matrix was formed in PP/EPDM blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3519–3525, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号