首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The new monomer, 5′-O-methacryloyl-3′-azido-3′-deoxythymidine (MAZT), was synthesized from methacryloyl chloride (MAC) and 3′-azido-3′-deoxythymidine (AZT). The homopolymer of MAZT and copolymers of MAZT with acrylic acid (AA) or exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic glycinylimide (ETGI) were synthesized by radical polymerizations. The structures of MAZT and polymers were confirmed identified by FT-IR and 1H-NMR spectroscopies. The number average molecular weights (Mˉn) and polydispersity indices of the synthesized polymers were in the range of 4,400 ∼ 20,400 and 1.2 ∼ 2.0. The in vitro cytotoxicities of polymers against K562 human leukemia and normal cell lines were greater than that of control. Received: 19 August 1997/Accepted: 26 September 1997  相似文献   

2.
A new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl‐5‐fluorouracil (ETBFU), was synthesized by reaction of 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl chloride and 5‐fluorouracil. The homopolymer of ETBFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerization using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETBFU and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The ETBFU content in poly(ETBFU‐co‐AA) and poly(ETBFU‐co‐VAc) was 43 and 14 mol%, respectively. The apparent number‐average molecular weight (Mn) of the polymers determined by GPC ranged from 8400 to 11 300. The in vitro cytotoxicity of the samples against mouse mammary carcinoma (FM3A), mouse leukaemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the order 5‐FU ≥ ETBFU > poly(ETBFU) > poly(ETBFU‐co‐AA) > poly(ETBFU‐co‐VAc). The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐fluorouracil at all doses tested. © 2000 Society of Chemical Industry  相似文献   

3.
The monomer, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic glycinyl imide(ETGI), was prepared by the Diels-Alder reaction of N-glycinylmaleimide and furan. Poly(ETGI), poly(ETGI-co-methacrylic acid)[poly(ETGI-co-MA)] and poly(ETGI-co-vinylacetate)[poly(ETGI-co-VAc)] were synthesized by photoinitiated homopolymerization of ETGI or copolymerizations of ETGI with MA and VAc. Synthesized ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were characterized by IR and 1H-NMR spectroscopies, elemental analysis, and gel permeation chromatography. The in vitro cytotoxicities of ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were evaluated using K-562 human leukemia cells and HeLa cells. In vitro cytotoxicity of monomer and polymers at a concentration of 1.0 mg/mL against K-562 human leukemia cells increased in the following order:poly(ETGI-co-MA) > poly(ETGI-co-VAc) > poly(ETGI) > Etgi. The cytotoxicities of copolymers against HeLa cells are less cytotoxic than ETGI at a dosage of 0.02, 1.0, and 5.0 mg/mL. The copolymers were very effective at any dosage tested. The in vivo antitumor activities of ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were also evaluated against mice bearing sarcoma 180. In vivoantitumor activity of monomer and polymers at a dosage of 80 mg/kg increased in the following order: ETGI > poly(ETGI-co-VAc) > poly(ETGI-co-MA) > poly(ETGI) > 5-fluorouracil (5-FU).ETGI and polymers containing ETGI showed higher antitumor activity than 5-FU at any dosage tested. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
A new monomer, vinyl‐(5‐fluorouracil)‐ethanoate (VFUE), was synthesized by reaction of 5‐fluorouracil (5‐FU) and vinyl iodoacetate. The homopolymer of VFUE and its copolymers with acrylic acid (A, A) and maleic anhydride (MAH) were prepared by photopolymerization. The synthesized VFUE and polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The contents of VFUE unit in poly(VFUE‐co‐AA) and poly(VFUE‐co‐MAH) were 21 mol% and 16 mol%, respectively. The number average molecular weights of the polymers determined by gel permeation chromatography were in the range 9600–17900 g mol?1. The in vitro cytotoxicities of the samples against a normal cell line decreased as follows: 5‐FU > VFUE > poly(VFUE) > poly(VFUE‐co‐AA) > poly(VFUE‐co‐MAH). The in vivo antitumour activities of the polymers against Balb/C mice bearing the sarcoma 180 tumour cells were greater than those of 5‐FU at all concentrations. The inhibition of simian virus 40 DNA replication by the samples was much greater than that of the control. © 2002 Society of Chemical Industry  相似文献   

5.
The attachment of anticancer agents to polymers is a promising approach towards reducing the toxic side‐effects and retaining the potent antitumour activity of these agents. A new tetrahydrophthalimido monomer containing 5‐fluorouracil (ETPFU) and its homopolymer and copolymers with acrylic acid (AA) and with vinyl acetate (VAc) have been synthesized and spectroscopically characterized. The ETPFU contents in poly(ETPFU‐co‐AA) and poly(ETPFU‐co‐VAc) obtained by elemental analysis were 21 mol% and 20 mol%, respectively. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 8900 g mol?1, Mw = 13 300 g mol?1, Mw/Mn = 1.5 for poly(ETPFU); Mn = 13 500 g mol?1, Mw = 16 600 g mol?1, Mw/Mn = 1.2 for poly(ETPFU‐co‐AA); Mn = 8300 g mol?1, Mw = 11 600 g mol?1, Mw/Mn = 1.4 poly(ETPFU‐co‐VAc). The in vitro cytotoxicity of the compounds against FM3A and U937 cancer cell lines increased in the following order: ETPFU > 5‐FU > poly(ETPFU) > poly(ETPFU‐co‐AA) > poly(ETPFU‐co‐VAc). The in vivo antitumour activities of all the polymers in Balb/C mice bearing the sarcoma 180 tumour cell line were greater than those of 5‐FU and monomer at the highest dose (800 mg kg?1). © 2002 Society of Chemical Industry  相似文献   

6.
In this research, new donor–acceptor (D‐A) photovoltaic polymers were synthesized from dithieno[3,2‐b:2′,3′‐d]pyrrole electron donor derivatives, including N‐benzoyldithieno[3,2‐b:2′,3′‐d]pyrrole and N‐(4‐hexylbenzoyl)dithieno[3,2‐b:2′,3′‐d]pyrrole, in combination with the electron deficient unit 2,5‐bis(2‐ethylhexyl)‐3,6‐di(thiophen‐2‐yl)‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione via direct (hetero)arylation polymerization. The D‐A conjugated polymers obtained were characterized via 1H NMR, gel permeation chromatography, Fourier transform infrared spectroscopy, DSC, XRD, photoluminescence and UV–visible methods. In addition, these D‐A polymers were used as activated layers in bilayer and bulk heterojunction structures for the fabrication of organic photovoltaic cells. © 2019 Society of Chemical Industry  相似文献   

7.
A new monomer, methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid (MTCA), was synthesized from citric acid and methacrylic anhydride. Poly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid) and poly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid)‐co‐(maleic anhydride) were prepared by radical polymerizations. Terpoly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid–maleic anhydride–furan) was obtained by in situ terpolymerization of MTCA and exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalic anhydride. The synthesized samples were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The number‐average molecular weights of the fractionated polymers determined by GPC were in the range 14 900–16 600 and polydispersity indices were less than 1.14. The in vitro IC50 values of the monomer and polymers against cancer and normal cell lines were much higher than those of 5‐fluorouracil (5‐FU). The in vivo antitumour activities of the synthesized samples at a dosage of 0.8 mg kg−1 against mice bearing the sarcoma 180 tumour cell line decreased in the order terpoly(MTCA‐MAH‐FUR) > poly(MTCA‐co‐MAH) > poly(MTCA) > MTCA > 5‐FU. The synthesized samples inhibited DNA replication and angiogenetic activity more than did 5‐FU. © 2001 Society of Chemical Industry  相似文献   

8.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

9.
A new monomer, 1,2,3‐tris(ethoxycarbonyl)‐2‐propyl acrylate (TPA), was synthesized by reaction of acryloyl chloride and triethyl citrate. The homopolymer of TPA and its copolymers with acrylic acid (AA), vinyl acetate (VAc) and maleic anhydride (MAH) were prepared by polymerization using lauroyl peroxide (LPO) at 70 °C for 24 h. The structures of TPA and its polymers were identified by FTIR, 1H NMR, 13C NMR spectroscopies, and elemental analysis. The number average molecular weights and polydispersity indices of the synthesized polymers determined by GPC were in the range 4200–23 000 g mol?1 and 1.1–2.1, respectively. The IC50 values of the synthesized samples against cancer cell lines were greater than those of 5‐fluorouracil (5‐FU). The percentage inhibition values of SV40 DNA replication were 82.2 for TPA, 34.3 for poly (TPA), 81.9 for poly(TPA‐co‐AA), 82.0 for poly(TPA‐co‐VAc), 35.6 for poly(TPA‐co‐MAH) and 12.7 for 5‐FU. The inhibitions of SV40 DNA replication and antiangiogenesis for the synthesized TPA and its polymers are much greater than those of the control. © 2001 Society of Chemical Industry  相似文献   

10.
3,3′‐Bisazidomethyl oxetane‐3‐azidomethyl‐3′‐methyl oxetane (BAMO‐AMMO) tri‐block copolymer was successfully synthesized by azidation of a polymeric substrate containing bromo leaving groups, and an alternative block energetic thermoplastic elastomer (ETPE) was prepared by chain extension reaction. The tri‐block copolymer was characterized by Fourier transform infrared (FTIR), 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction (XRD), and thermogravimetric analysis (TGA). It was found that the composition of the copolymer is nearly 1 : 1; crystallinity of the copolymer (71.81 %) is less than that of PBAMO (78.30 %). This is due to a partly mixture between soft and hard segments. Kinetic result shows that a crosslinking network is formed after the decomposition of azide group. Tensile strength of alternative block ETPE is 150 % of traditionally synthesized BAMO‐AMMO ETPE.  相似文献   

11.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

12.
X‐ray crystallographic study of 2,2′,2″,2′′′,4,4′,4″,4′′′,6,6′,6″,6′′′‐dodecanitro‐1,1′ : 3′1″ : 3″,1′′′‐quaterphenyl (DODECA) has been carried out. Nonbonding interatomic distances of oxygen atoms inside of all the nitro groups are shorter than those corresponding to the intermolecular contact radii for oxygen. By means of the DFT B3LYP/6‐31(d, p) method a difference of 136 kJ mol−1 between the X‐ray and DFT structures of DODECA was found. The bearer of the highest initiation reactivity in its molecule in solid phase should be the nitro group at 4′′′‐position, in contrast to those at 2′‐ or 2″‐positions in its isolated molecule. The most reactive nitro group in the DODECA molecule can be well specified by the relationship between net charges on nitro groups and charges on their nitrogen atoms, both of them for the X‐ray structure. The 15N chemical shift, corresponding to this nitro group for the initiation by impact and shock, correlates very well with these shifts of the reaction centers of the other six “genuine” polynitro arenes.  相似文献   

13.
Aromatic polyesters were prepared and used to improve the brittleness of bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane and o,o′‐diallyl bisphenol A (Matrimid 5292 A/B resin). The aromatic polyesters included PEPT [poly(ethylene phthalate‐co‐ethylene terephthalate)], with 50 mol % of terephthalate, PEPB [poly(ethylene phthalate‐co‐ethylene 4,4′‐biphenyl dicarboxylate)], with 50 mol % of 4,4′‐biphenyl dicarboxylate, and PEPN [poly(ethylene phthalate‐co‐ethylene 2,6‐naphthalene dicarboxylate)], with 50 mol % 2,6‐naphthalene dicarboxylate unit. The polyesters were effective modifiers for improving the brittleness of the bismaleimide resin. For example, inclusion of 15 wt % PEPT (MW = 9300) led to a 75% increase in fracture toughness, with retention in flexural properties and a slight loss of the glass‐transition temperature, compared with the mechanical and thermal properties of the unmodified cured bismaleimide resin. Microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism was assessed as it related to the morphological and dynamic viscoelastic behaviors of the modified bismaleimide resin system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2352–2367, 2001  相似文献   

14.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

15.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   

16.
A series of poly(?‐caprolactone)‐b‐poly(ethylene glycol) (PCL‐b‐PEG) block copolymers with different molecular weights were synthesized with a salicylaldimine‐aluminum complex in the presence of monomethoxy poly(ethylene glycol). The block copolymers were characterized by 1H NMR, GPC, WAXD, and DSC. The 1H NMR and GPC results verify the block structure and narrow molecular weight distribution of the block copolymers. WAXD and DSC results show that crystallization behavior of the block copolymers varies with the composition. When the PCL block is extremely short, only the PEG block is crystallizable. With further increase in the length of the PCL block, both blocks can crystallize. The PCL crystallizes prior to the PEG block and has a stronger suppression effect on crystallization of the PEG block, while the PEG block only exerts a relatively weak adverse effect on crystallization of the PCL block. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
The synthesis and characterization of three new bis(2,2′:6′,2′-terpyridine) (tpy) ligands containing different hydrazone spacers between the metal-binding domains are described. Treatment of 1,4-benzenedicarbaldehyde bis(2,2′:6′,2′′-terpyridin-4′-ylhydrazone) (1) with [(tpy)RuCl3] in the presence of N-ethylmorpholine results in the formation of [(tpy)Ru(μ-1)Ru(tpy)]4+. Single crystal X-ray diffraction data for [(tpy)Ru(μ-1)Ru(tpy)][PF6]4·8MeCN confirm the ability of the hydrazone-based ligand to bridge two ruthenium(II) centres, providing proof-of-principle for the application of this class of flexible ligand in the design of coordination polymers.  相似文献   

18.
We have investigated the interface formation of Ca with poly(p-phenylene α,α′-diphenyl vinylene) (PPV-DP) and poly(p-phenylene α-phenyl vinylene) (PPV-P) using X-ray photoemission spectroscopy (XPS). Similarly to our earlier findings in metal/PPV interface formation, the O 1s peak shifted toward a lower binding energy as soon as Ca was deposited on to the polymers. This was accompanied by the formation of Ca? O, suggesting a chemical origin for the O 1s shift. By contrast, the C 1s peak shift toward a lower binding energy was observed relatively later, after about 4 Å of Ca deposition. At the same time, a new C 1s component became noticable at about ?1.5 eV relative to the initial C 1s peak. This component signifies the possibility of polymer disruption by the Ca atoms to form Ca? C species. The C 1s peak shift is attributed to Ca induced surface band bending and barrier formation as in the case of metal/PPV interface formation. The disruption of the polymer may also induce changes in the interface electronic states and contribute to the C 1s peak shift. From the intensity attenuation analysis, we conclude that the initial 15 Å of Ca overlayer is contaminated by the Ca? O and Ca? C species and the overlayer is pure beyond 15 Å of Ca coverage.  相似文献   

19.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号