首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel “semi-targeted” approach focusing on activating “silent” BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.  相似文献   

3.
Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative “anti”-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various “suppressor genes” and “oncogenes” are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.  相似文献   

4.
Ferritin possesses an immune function to defend against pathogen infection. To elucidate the immunity-protecting roles of ferritin from Ctenopharyngodon idellus (Ciferritin) against virus infection, the cDNA and promoter sequences of Ciferritin were determined, and the correlations between Ciferrtin expressions and promoter methylation levels were analyzed. In addition, the functional role of Ciferrtin on GCRV (grass carp reovirus) infection was assessed. The full-length cDNA of Ciferritin is 1053 bp, consists of a 531 bp open-reading frame, and encodes 176 amino acids. Ciferritin showed the highest sequence identity with the ferritin middle subunit of Mylopharyngodon piceus (93.56%), followed by the subunits of Megalobrama amblycephala and Sinocyclocheilus rhinocerous. Ciferritin contains a conserved ferritin domain (interval: 10–94 aa), and the caspase recruitment domain (CARD) and Rubrerythrin domain were also predicted. In the spleen and kidney, significantly higher Ciferritin expressions were observed at 6, 12, 24, or 168 h post GCRV infection than those in the PBS injection group (p < 0.05). The Ciferrtin expression level in the progeny of maternal-immunized grass carp was significantly higher than that in the progeny of common grass carp (p < 0.05). Ciferritin promoter methylation level in the progeny from common grass carp was 1.27 ± 0.15, and in the progeny of the maternal-immunized group was 1.00 ± 0.14. In addition, methylation levels of “CpG9” and “CpG10” loci were significantly lower in the progeny of maternal-immunized fish than those in the common group. Except for the “CpG5”, methylation levels of all other detected “CpG” loci negatively correlated with Ciferritin expression levels. Furthermore, the total methylation level of “CpG1–10” negatively correlated with the Ciferritin expressions. The Ciferritin expression level was significantly up-regulated, and the VP7 protein levels were significantly reduced, at 24 h post GCRV infection in the Ciferritin over-expression cells (p < 0.05). The results from the present study provide sequence, epigenetic modification and expression, and anti-GCRV functional information of Ciferritin, which provide a basis for achieving resistance to GCRV in grass carp breeding.  相似文献   

5.
6.
7.
8.
Despite recent progress, the application of CRISPR/Cas9 in perennial plants still has many obstacles to overcome. Our previous results with CRISPR/Cas9 in apple and pear indicated the frequent production of phenotypic and genotypic chimeras, after editing of the phytoene desaturase (PDS) gene conferring albino phenotype. Therefore, our first objective was to determine if adding an adventitious regeneration step from leaves of the primary transgenic plants (T0) would allow a reduction in chimerism. Among hundreds of adventitious buds regenerated from a variegated T0 line, 89% were homogeneous albino. Furthermore, the analysis of the target zone sequences of twelve of these regenerated lines (RT0 for “regenerated T0” lines) indicated that 99% of the RT0 alleles were predicted to produce a truncated target protein and that 67% of RT0 plants had less heterogeneous editing profiles than the T0. Base editors are CRISPR/Cas9-derived new genome-editing tools that allow precise nucleotide substitutions without double-stranded breaks. Hence, our second goal was to demonstrate the feasibility of CRISPR/Cas9 base editing in apple and pear using two easily scorable genes: acetolactate synthaseALS (conferring resistance to chlorsulfuron) and PDS. The two guide RNAs under MdU3 and MdU6 promoters were coupled into a cytidine base editor harboring a cytidine deaminase fused to a nickase Cas9. Using this vector; we induced C-to-T DNA substitutions in the target genes; leading to discrete variation in the amino-acid sequence and generating new alleles. By co-editing ALS and PDS genes; we successfully obtained chlorsulfuron resistant and albino lines in pear. Overall; our work indicates that a regeneration step can efficiently reduce the initial chimerism and could be coupled with the application of base editing to create accurate genome edits in perennial plants.  相似文献   

9.
10.
11.
12.
Shiga toxin (STx) or Vero toxin is a virulence factor produced by enterohemorrhagic Escherichia coli. The toxin binds to the glycosphingolipid globotriaosylceramide (Gb3) for its entry, and causes cell death by inhibiting ribosome function. Previously, we performed a loss-of-function screen in HeLa cells using a human CRISPR knockout (KO) library and identified various host genes required for STx-induced cell death. To determine whether this library targeted to the human genome is applicable to non-human primate cells and to identify previously unrecognized factors crucial for STx-induced cell death, we herein performed a similar screen in the African green monkey kidney-derived Vero C1008 subline. Many genes relevant to metabolic enzymes and membrane trafficking were enriched, although the number of enriched genes was less than that obtained in the screening for HeLa cells. Of note, several genes that had not been enriched in the previous screening were enriched: one of these genes was SYS1, which encodes a multi-spanning membrane protein in the Golgi apparatus. In SYS1 KO Vero cells, expression of Gb3 and sphingomyelin was decreased, while that of glucosylceramide and lactosylceramide was increased. In addition, loss of SYS1 inhibited the biosynthesis of protein glycans, deformed the Golgi apparatus, and perturbed the localization of trans-Golgi network protein (TGN) 46. These results indicate that the human CRISPR KO library is applicable to Vero cell lines, and SYS1 has a widespread effect on glycan biosynthesis via regulation of intra-Golgi and endosome–TGN retrograde transports.  相似文献   

13.
14.
The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.  相似文献   

15.
16.
17.
Phytophthora capsici (Leonian), classified as an oomycete, seriously threatens the production of pepper (Capsicum annuum). Current understanding of the defense responses in pepper to P. capsici is limited. In this study, RNA-sequencing analysis was utilized to identify differentially expressed genes in the resistant line “PI 201234”, with 1220 differentially expressed genes detected. Of those genes, 480 were up-regulated and 740 were down-regulated, with 211 candidate genes found to be involved in defense responses based on the gene annotations. Furthermore, the expression patterns of 12 candidate genes were further validated via quantitative real-time PCR (qPCR). These genes were found to be significantly up-regulated at different time points post-inoculation (6 hpi, 24 hpi, and 5 dpi) in the resistant line “PI 201234” and susceptible line “Qiemen”. Seven genes were found to be involved in cell wall modification, phytoalexin biosynthesis, symptom development, and phytohormone signaling pathways, thus possibly playing important roles in combating exogenous pathogens. The genes identified herein will provide a basis for further gene cloning and functional verification studies and will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.  相似文献   

18.
DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号