首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
真空电子学和微波真空电子器件的发展和技术现状   总被引:1,自引:0,他引:1  
真空电子学是研究真空中与电子相关的物理现象的学科,主要研究电子的产生和运动、电子与电磁波和物质的相互作用,是各类真空电子器件和粒子加速器等真空电子装置的基础。微波真空电子器件是最重要的真空电子器件,已广泛应用于国防、国民经济和科学研究领域,是军用和民用微波电子系统的核心器件,本文将介绍真空电子学和微波真空电子器件的发展历史,技术现状和应用情况,并对其发展趋势作简要的评述。  相似文献   

2.
钯银铜焊料     
一、概述电真空器件金属另件间联结的方法很多,由于钎焊具有真空气密性,可焊接不同种类的金属和合金,甚至能把金属与陶瓷连接起来,能把小而薄的另件连接成大的、复杂的部件,能保证另件原有的光洁度和精密的尺寸,因此钎焊及陶瓷封接工艺成了电真空器件制造工艺中的一个基本工艺。一个大型的微波电子器件需有上百条钎焊焊缝,累积焊缝总长达几十米;由此可知,钎焊焊料是电真空器件不可缺少的基本结构材料之一,焊料是多种多样的,  相似文献   

3.
采用无压烧结工艺,以AlN和镁橄榄石(M2S)粉作为基体制备了纳米碳管(CNT)复合陶瓷。制备了热导率高、衰减量大及频率匹配特性良好的AlN—CNT复合微波衰减陶瓷。制备出的致密的M2S-CNT复合微波衰减材料有希望替代用在真空电子器件中的氧化铝多孔渗碳微波吸收材料。  相似文献   

4.
本文给出了大功率微波真空电子器件的发展及应用情况。海湾战争证明,微波管仍然是现代军事电子装备的关键器件,其性能的不断改进,大大增强了电子战和雷达系统的成力。真空微电子技术和相对论电子学为微波真空电子器件的发展,奠定了更为广阔的基础。  相似文献   

5.
新型真空器件在武器装备中的应用   总被引:2,自引:0,他引:2  
介绍真空电子器件和固态器件组合的新型电子器件——微波功率模块(MPM),以及将微电子工艺应用于传统真空电子器件而出现的真空微电子器件,这两种器件将对下一代武器系统有重要的影响。  相似文献   

6.
作为微波真空电子器件的常用材料之一,无氧铜材料的蒸发特性会对微波真空电子器件的电性能产生影响。该文利用超高真空测试设备,研究了处理工艺对无氧铜材料的蒸发性能的影响,采用X射线测厚仪测试了蒸发的铜膜厚度,用扫描电镜(SEM)观测了无氧铜材料的表面形貌。结果表明表面宏观形貌粗糙度对无氧铜材料的蒸发性能影响不大,但处理工艺对蒸发性能影响很大;无氧铜材料经过酸洗后,会大大增加蒸发量;无氧铜材料经过烧氢处理,可降低蒸发量,而经过去油清洗并烧氢处理的无氧铜的蒸发量极低。对无氧铜材料进行了表面分析,发现无氧铜材料的真空蒸发性能与材料的表面形貌状态有关,当表面微观形貌比较光滑、无孔洞等缺陷时,无氧铜材料的真空蒸发量就少。  相似文献   

7.
GaN材料系列的研究进展   总被引:3,自引:0,他引:3  
宋登元  王秀山 《微电子学》1998,28(2):124-128
GaN及其合金作为第三代半导体材料具有一系列优异的物理和化学性质,在光电子器件,高温大功率电子器件及高频微波器件应用方面具有广阔的前景,已成为当前高科技领域的研究重点,论述了这种材料的研究历史与发展现状,物理与化学性质,薄膜的生长方法及在光学电子和微电子器件应用于方面的研究进展。  相似文献   

8.
作为微波真空电子器件的常用材料之一,无氧铜材料的蒸发特性会对微波真空电子器件的电性能产生影响.该文利用超高真空测试设备,研究了处理工艺对无氧铜材料的蒸发性能的影响,采用X射线测厚仪测试了蒸发的铜膜厚度,用扫描电镜(SEM)观测了无氧铜材料的表面形貌.结果表明表面宏观形貌粗糙度对无氧铜材料的蒸发性能影响不大,但处理工艺对蒸发性能影响很大;无氧铜材料经过酸洗后,会大大增加蒸发量;无氧铜材料经过烧氢处理,可降低蒸发量,而经过去油清洗并烧氢处理的无氧铜的蒸发量极低.对无氧铜材料进行了表面分析,发现无氧铜材料的真空蒸发性能与材料的表面形貌状态有关,当表面微观形貌比较光滑、无孔洞等缺陷时,无氧铜材料的真空蒸发量就少.  相似文献   

9.
4J33可伐材料也称铁-镍-钴合金,由于其具有与无氧铜、陶瓷材料等相近的热膨胀系数,并具有良好的真空钎焊性能,故在真空灭弧室的结构设计中多被采用,但在用银铜焊料对可伐材料进行钎焊封接时经常会发生无法修补的可伐开裂现象,直接给应用者造成损失。针对这一现象做了一系列的试验,并结合相关的理论知识对此现象进行了详细的分析,从结构设计与工艺控制角度来探寻适宜可行的解决方法。  相似文献   

10.
利用机械合金化-真空退火工艺制备了Fe75–xNixSi25(x=0,2.5,5,7.5)合金,借助SEM、XRD和矢量网络分析仪等分析了Ni掺杂量对Fe3Si合金的微观结构和吸波性能的影响。结果表明:随着Ni掺杂量的增加,退火后的合金粉末的平均晶粒尺寸先减小后增大、微波吸收能力先增强后减弱。当Ni掺杂量为摩尔分数2.5%时,所制Fe72.5Ni2.5Si25合金粉末的吸波能力最强,当涂层厚度为4 mm时,该样品的吸收峰频率和峰值分别为7.5 GHz和–14.7dB,在2~10 GHz其反射率低于–5 dB的频带宽度达到了5.2 GHz,显示出良好的微波吸收宽频特性。  相似文献   

11.
大功率微波真空电子学技术进展   总被引:8,自引:0,他引:8  
廖复疆 《电子学报》2006,34(3):513-516
本文综述了近十年来微波真空电子技术进展,由于其在现代军事装备中的重要作用和近十年来技术上取得的进步,使微波真空电子器件在未来30年中仍然是国防装备的核心器件.大功率行波管、微波功率模块(MPM)、多注速调管、回旋管和微型真空电子器件等是正在发展中的重要器件;真空电子器件和半导体器件之间的相互结合与渗透,必将建立兼有两者优点的、性能更加优良的新一代大功率微波电子器件.  相似文献   

12.
微波真空电子器件广泛应用于卫星通信及未来军事前沿的高功率微波武器等方面,这些器件需要电流发射稳定、蒸发小、寿命长的浸渍阴极,进而对浸渍阴极钨海绵基体制备工艺提出了很高要求。本文首先利用分级技术对钨粉进行了分级,制备出流动性好颗粒均匀的钨粉。采用气体纯化与检测系统,可以除掉氢气中残余的氧和水,使氢气的露点降至-90℃以下,为制备无氧化的钨海绵基体提供良好的烧结气氛。采用真空去铜技术,制备出表面非常光洁,没有任何污渍和杂质沉淀的阴极基体,利用X射线能量色散谱(EDX)分析了制备的阴极基体断面,结果表明新方法达到了传统化学去铜及再高温去铜后的效果,新方法更节省时间,更环保。通过调节烧结时间和烧结气氛可以制备出微波器件所需的孔度适宜、闭孔率低的阴极基体,为制备低蒸发、长寿命微波器件的阴极打下基础。  相似文献   

13.
Recent technical and market advances have created a resurgence of interest in miniature vacuum devices based on field-emission vacuum microelectronics. For several operational conditions, these new devices have inherent advantages over their solid-state counterparts. Vacuum microelectronic devices are less sensitive to temperature variations, provide high-speed switching capabilities, and are less susceptible to radiation damage. In addition, electron beams can be steered with external electric and magnetic fields, and electron devices are capable of operation with high current densities. In this article, we describe the development of this new generation of vacuum microelectronic devices and showcase some exciting applications arising from this technology, ranging from flat-panel displays to electron beam devices  相似文献   

14.
We have observed electron emission into vacuum from the exposed areas of a patterned p++-GaAs substrate which was coated with cesium and oxygen. The emission barrier is a double layer of titanium-tungsten/silicon nitride. The exposed areas of the cathode were activated to the negative electron affinity (NEA) condition. It has been an open question whether it would be possible to activate the exposed areas of a patterned GaAs cathode. This result opens the possibility of utilizing NEA cathode technology for projection electron beam lithography tools, NEA-based vacuum microelectronics devices, and a combination of bulk devices with NEA emitters. A picture of an emission pattern projected onto a phosphor screen is presented. Auger depth profile was used to determine the stability of the TiW/GaAs interface through the activation procedure. Short and long term current stability were measured. A technique for cathode recovery and reactivation has been developed  相似文献   

15.
张益军 《红外技术》2022,44(8):778-791
半导体光电阴极具有量子效率高、暗电流小的优点,被广泛应用于光电倍增管、像增强器等各类真空光电探测和成像器件,促进了极弱光的超快探测和成像技术的发展。另外作为能够产生高品质电子束的真空电子源,用于加速器光注入器、电子显微镜等科学装置。本文首先介绍了目前常用半导体光电阴极的分类以及在真空光电探测成像、真空电子源领域的具体应用。然后对碱金属碲化物光电阴极、碱金属锑化物光电阴极、GaAs光电阴极三类典型半导体光电阴极的制备技术进行了总结,并介绍了微纳结构、低维材料、单晶外延等新技术在半导体光电阴极研制中的应用。最后对半导体光电阴极的技术发展进行了展望。  相似文献   

16.
本文阐述了太赫兹真空电子器件对阴极电子源的需求条件,分析了在该器件中应用场发射阴极的可能性。介绍 了当前两种主要场发射阴极,即金属薄膜场发射阴极和碳纳米管场发射阴极的国内外发展情况,指出了它们各自的优势 以及实际应用中存在的障碍,并提出了相应的解决途径。试验和分析结果表明,场发射阴极具有很好的太赫兹真空电子 器件应用前景。  相似文献   

17.
场致发射阴极作为重要的电子源之一,在真空电子器件的发展进程中扮演了重要的角色。在与固态器件的竞争中,真空电子器件朝大功率高频方向持续发展,场致发射阴极的应用使其在器件尺寸、可靠性、功耗和工作频率等方面具备了较大的改进空间。本文综述了近年来大电流场致发射阴极技术进展,特别介绍了碳纳米管场致发射阴极的发展。试验表明在直流测试条件下,该类型场致发射阴极发射电流密度已可达到A/cm2量级,且可以实现长寿命高稳定发射,未来在场致发射阴极微波放大器、自由电子激光器和新型中子源等方面将有广泛的应用前景。  相似文献   

18.
太赫兹(THz)技术发展受到特别的关注,本文重点讨论了真空电子器件在100GHz以上频率几个大气窗口的应用,100GHz和220GHz是未来10年可能形成装备的频率,应当重视这些频率真空电子器件的预先研究。  相似文献   

19.
High vacuum devices incorporating the secondary electron resonance phenomenon have been used for several years in receiver protection circuits for high-power high-pulse repetition frequency (PRF) RADARs. These are known as multipactor devices. Recent technological developments have increased the peak-power handling capability and bandwidth of airborne-qualified devices to 50 kW and 12.5 percent respectively. Life tests on multipactor devices have demonstrated 2500 h of failure free operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号