首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
The 60 kDa molecular chaperones (chaperonins) are high molecular weight protein complexes having a characteristic double-ring toroidal shape; they are thought to aid the folding of denatured or newly synthesized polypeptides. These proteins exist as two functionally similar, but distantly related families, one comprising the bacterial and organellar chaperonins and another (the so-called CCT-TRiC family) including the chaperonins of the archaea and the eukaryotes. Although some evidence exists that the archaeal chaperonins are implicated in protein folding, much remains to be learned about their precise cellular function. In this work, we report that the chaperonin of the thermophilic archaeon Sulfolobus solfataricus is an RNA-binding protein that interacts specifically in vivo with the 16S rRNA and participates in the maturation of its 5' extremity in vitro. We further show that the chaperonin binds RNA as the native heterooligomeric complex and that RNA binding and processing are inhibited by ATP. These results agree with previous reports indicating a role for the bacterial/organellar chaperonins in RNA protection or processing and suggest that all known chaperonin families share specific and evolutionarily ancient functions in RNA metabolism.  相似文献   

2.
We have studied the effects of the Sulfolobus solfataricus chaperonin on the aggregation and inactivation upon heating of four model enzymes: chicken egg white lysozyme (one 14.4-kDa chain), yeast alpha-glucosidase (one 68.5-kDa chain), chicken liver malic enzyme (four 65-kDa subunits), and yeast alcohol dehydrogenase (four 37.5-kDa subunits). When the proteins were heated in the presence of an equimolar amount of chaperonin, 1) the aggregation was prevented in all solutions; 2) the inactivation profiles of the single-chain enzymes were comparable with those detected in the absence of the chaperonin, and enzyme activities were regained in the solutions heated in the presence of the chaperonin upon ATP hydrolysis (78 and 55% activity regains for lysozyme and alpha-glucosidase, respectively); 3) the inactivation of the tetrameric enzymes was completely prevented, whereas the activities decreased in the absence of the chaperonin. We demonstrate by gel filtration chromatography that the chaperonin interacted with the structures occurring during thermal denaturation of the model proteins and that the interaction with the single-chain proteins (but not that with the tetrameric proteins) was reversed upon ATP hydrolysis. The chaperonin had nonequivalent surfaces for the binding of the model proteins upon heating: the thermal denaturation intermediates of the single-chain proteins share Surfaces I, while the thermal denaturation intermediates of the tetrameric proteins share Surfaces II. ATP binding to the chaperonin induced a conformation that lacked Surfaces I and carried Surfaces II. These data support the concept that chaperonins protect native proteins against thermal aggregation by two mechanistically distinct strategies (an ATP-dependent strategy and an ATP-independent strategy), and provide the first evidence that a chaperonin molecule bears functionally specialized surfaces for the binding of the protein substrates.  相似文献   

3.
The eukaryotic cytosolic chaperonins are large heterooligomeric complexes with a cylindrical shape, resembling that of the homooligomeric bacterial counterpart, GroEL. In analogy to GroEL, changes in shape of the cytosolic chaperonin have been detected in the presence of MgATP using electron microscopy but, in contrast to the nucleotide-induced conformational changes in GroEL, no details are available about the specific nature of these changes. The present study identifies the structural regions of the cytosolic chaperonin that undergo conformational changes when MgATP binds to the nucleotide binding domains. It is shown that limited proteolysis with trypsin in the absence of MgATP cleaves each of the eight subunits approximately in half, generating two fragments of approximately 30 kDa. Using mass spectrometry (MS) and N-terminal sequence analysis, the cleavage is found to occur in a narrow span of the amino acid sequence, corresponding to the peptide binding regions of GroEL and to the helical protrusion, recently identified in the structure of the substrate binding domain of the archeal group II chaperonin. This proteolytic cleavage is prevented by MgATP but not by ATP in the absence of magnesium, ATP analogs (MgATPyS and MgAMP-PNP) or MgADP. These results suggest that, in analogy to GroEL, binding of MgATP to the nucleotide binding domains of the cytosolic chaperonin induces long range conformational changes in the polypeptide binding domains. It is postulated that despite their different subunit composition and substrate specificity, group I and group II chaperonins may share similar, functionally-important, conformational changes. Additional conformational changes are likely to involve a flexible helix-loop-helix motif, which is characteristic for all group II chaperonins.  相似文献   

4.
The molecular chaperone activities of the only known chaperonin in the eukaryotic cytosol (cytosolic chaperonin containing T-complex polypeptide 1 (CCT)) appear to be relatively specialized; the main folding substrates in vivo and in vitro are identified as tubulins and actins. CCT is unique among chaperonins in the complexity of its hetero-oligomeric structure, containing eight different, although related, gene products. In addition to their known ability to bind to and promote correct folding of newly synthesized and denatured tubulins, we show here that CCT subunits alpha, gamma, zeta, and theta also associated with in vitro assembled microtubules, i.e. behaved as microtubule-associated proteins. This nucleotide-dependent association between microtubules and CCT polypeptides (Kd approximately 0.1 microM CCT subunit) did not appear to involve whole oligomeric chaperonin particles, but rather free CCT subunits. Removal of the tubulin COOH termini by subtilisin digestion caused all eight CCT subunits to associate with the microtubule polymer, thus highlighting the non-chaperonin nature of the selective CCT subunit association with normal microtubules.  相似文献   

5.
Aminopeptidases are exopeptidases that selectively release N-terminal amino acid residues from polypeptides and proteins. Bacteria display several aminopeptidasic activities which may be localised in the cytoplasm, on membranes, associated with the cell envelope or secreted into the extracellular media. Studies on the bacterial aminopeptide system have been carried out over the past three decades and are significant in fundamental and biotechnological domains. At present, about one hundred bacterial aminopeptidases have been purified and biochemically studied. About forty genes encoding aminopeptidases have also been cloned and characterised. Recently, the three-dimensional structure of two aminopeptidases, the methionine aminopeptidase from Escherichia coli and the leucine aminopeptidase from Aeromonas proteolytica, have been elucidated by crystallographic studies. Most of the quoted studies demonstrate that bacterial aminopeptidases generally show Michaelis-Menten kinetics and can be placed into either of two categories based on their substrate specificity: broad or narrow. These enzymes can also be classified by another criterium based on their catalytic mechanism: metallo-, cysteine- and serine-aminopeptidases, the former type being predominant in bacteria. Aminopeptidases play a role in several important physiological processes. It is noteworthy that some of them take part in the catabolism of exogenously supplied peptides and are necessary for the final steps of protein turnover. In addition, they are involved in some specific functions, such as the cleavage of N-terminal methionine from newly synthesised peptide chains (methionine aminopeptidases), the stabilisation of multicopy ColE1 based plasmids (aminopeptidase A) and the pyroglutamyl aminopeptidase (Pcp) present in many bacteria and responsible for the cleavage of the N-terminal pyroglutamate.  相似文献   

6.
The chaperonin GroEL is a ribosome-sized double-ring structure that assists in folding a diverse set of polypeptides. We have examined the fate of a polypeptide during a chaperonin-mediated folding reaction. Strikingly, we find that, upon addition of ATP and the cochaperonin GroES, polypeptide is released rapidly from GroEL in a predominantly nonnative conformation that can be trapped by mutant forms of GroEL that are capable of binding but not releasing substrate. Released polypeptide undergoes kinetic partitioning: a fraction completes folding while the remainder is rebound rapidly by other GroEL molecules. Folding appears to occur in an all-or-none manner, as proteolysis and tryptophan fluorescence indicate that after rebinding, polypeptide has the same structure as in the original complex. These observations suggest that GroEL functions by carrying out multiple rounds of binding aggregation-prone or kinetically trapped intermediates, maintaining them in an unfolded state, and releasing them to attempt to fold in solution.  相似文献   

7.
The complete DNA sequence of cosmid clone p59 comprising 37,549 bp derived from chromosome X was determined from an ordered set of subclones. The sequence contains 14 open reading frames (ORFs) containing at least 100 consecutive sense codons. Four of the ORFs represent already known and sequenced yeast genes: B645 is identical to the SME1 gene encoding a protein kinase, required for induction of meiosis in yeast, D819 represents the MEF2 gene probably encoding a second mitochondrial elongation factor-like protein, D678 is identical to the yeast GSH1 gene encoding gamma-glutamylcysteine synthetase and B746 is identical to the CSD3 gene, which plays an as yet unidentified role in chitin biosynthesis and/or its regulation. The deduced amino acid sequence of A550 is 63% identical to the Cc eta subunit of a murine TCP-1-containing chaperonin and more than 35% identical to thermophilic factor 55 from Sulfolobus shibatae, as well as to a number of proteins belonging to the chaperonin TCP-1 family. Open reading frame F551 exhibits homology to two regions of the DAL80 gene located on yeast chromosome XI encoding a pleiotropic negative regulatory protein. In addition, extensive homology was detected in three regions including parts of ORFs A560, B746/CSD3 and the incomplete ORF C852 to three consecutive ORFs of unknown function in the middle of the right arm of chromosome XI. Finally, the sequence contained a tRNA(Arg3) (AGC) gene.  相似文献   

8.
Electron microscopy of the tetradecameric double-ring complex of GroEL reveals a four-layered structure, indicating that the 58 kDa subunits are composed of two major morphological domains. We have used immuno-electron microscopy to assign these domains to the corresponding segments of the GroEL sequence. Upon chemical modification of GroEL with N-ethylmaleimide, protease treatment in the presence of ATP or ADP generates GroEL fragments of 15 kDa (N15; residues 1-141) and 40 kDa (C40; residues 153-531). As visualized by scanning transmission electron microscopy, affinity-purified antibodies directed against C40 recognize the outer layers, whereas antibodies against N15 interact with the equatorial portions of the GroEL double-ring. Thus, the two major domains of the subunits in the chaperonin complex are arranged in the order C40-N15:N15-C40. The single-ring chaperonin co-factor GroES interacts with the C40 domain while the ATP-binding site of GroEL is probably close to the junction between N15 and C40.  相似文献   

9.
Chaperonins are a class of stress-inducible molecular chaperones involved in protein folding. We report the cloning, sequencing and characterisation of the rat mitochondrial chaperonin 60 and chaperonin 10 genes. The two genes are arranged in a head-to-head configuration and together comprise 14 kb and contain 14 introns. The genes are linked together by a region of approximately 280 bp, which constitutes a bidirectional promoter and includes a common heat-shock element. Insertion of the shared promoter region between two reporter genes is sufficient to drive their expression under both constitutive and heat-shock conditions. The arrangement of the mammalian chaperonin genes suggests the potential to provide the coordinated regulation of their products in a manner that is mechanistically distinct from, yet conceptually similar to, that employed by the bacterial chaperonin (groE) operon.  相似文献   

10.
The chaperonins GroEL and GroES of Escherichia coli facilitate protein folding in an adenosine triphosphate (ATP)-dependent reaction cycle. The kinetic parameters for the formation and dissociation of GroEL-GroES complexes were analyzed by surface plasmon resonance. Association of GroES and subsequent ATP hydrolysis in the interacting GroEL toroid resulted in the formation of a stable GroEL:ADP:GroES complex. The complex dissociated as a result of ATP hydrolysis in the opposite GroEL toroid, without formation of a symmetrical GroEL:(GroES)2 intermediate. Dissociation was accelerated by the addition of unfolded polypeptide. Thus, the functional chaperonin unit is an asymmetrical GroEL:GroES complex, and substrate protein plays an active role in modulating the chaperonin reaction cycle.  相似文献   

11.
12.
Higher plant chloroplasts contain a 21-kDa protein, chaperonin 21 (Cpn21), that is a functional homolog of the chaperonin 10 (Cpn10). The chloroplast Cpn21 polypeptide consists of two Cpn10-like domains fused together in tandem. We describe here the cDNA sequence of the Cpn21 (AtCpn21) precursor protein from Arabidopsis thaliana. The deduced amino acid sequence of the AtCpn21 precursor protein, 253 amino acids long, shows 61% identity with the spinach Cpn21 protein. The AtCpn21 precursor protein contains the typical chloroplast transit peptide of 51 amino acids at its aminoterminus and the two Cpn10-like domains which exhibits 46% sequence identity to each other. The predicted mature-sized polypeptide of AtCpn21 was expressed in Escherichia coli as a soluble 21-kDa protein. Gel-filtration and chemical cross-linking analyses showed that the recombinant mature AtCpn21 protein forms a stable homo-oligomer composed of three or four polypeptides.  相似文献   

13.
Toc36 is a family of 44-kDa envelope polypeptides previously identified as components of the chloroplast protein import apparatus by virtue of their close physical proximity to translocating proteins. An indication of their function thus remains at large. A heterologous in vivo approach for studying the function of Toc36 was developed in this study by introducing a member of Toc36 into E. coli to assess its effect on bacterial protein translocation. The presence of Toc36 enhances the translocation of two bacterial periplasmic proteins in a manner resembling the chloroplast system. Translocation of the two bacterial periplasmic proteins was less sensitive to sodium azide, resembling more the azide-insensitive nature of the chloroplast protein import process. Mutated Toc36 proteins were not capable of causing the same effect as that observed for unaltered Toc36. Toc36 was also capable of complementing bacterial strains with temperature-sensitive secA mutations that affected protein translocation. The combined results provide evidence that Toc36 plays a central role in the chloroplast protein translocation process.  相似文献   

14.
The archaeal leuB gene encoding isopropylmalate dehydrogenase of Sulfolobus sp. strain 7 was cloned, sequenced, and expressed in Escherichia coli. The recombinant Sulfolobus sp. enzyme was extremely stable to heat. The substrate and coenzyme specificities of the archaeal enzyme resembled those of the bacterial counterparts. Sedimentation equilibrium analysis supported an earlier proposal that the archaeal enzyme is homotetrameric, although the corresponding enzymes studied so far have been reported to be dimeric. Phylogenetic analyses suggested that the archaeal enzyme is homologous to mitochondrial NAD-dependent isocitrate dehydrogenases (which are tetrameric or octameric) as well as to isopropylmalate dehydrogenases from other sources. These results suggested that the present enzyme is the most primitive among isopropylmalate dehydrogenases belonging in the decarboxylating dehydrogenase family.  相似文献   

15.
We have determined the structure of the Ascaris major sperm protein (MSP) to 2.5 A resolution using X-ray crystallography. The MSP polypeptide chain has an immunoglobulin-like fold based on a seven-stranded beta sandwich. In two strands, cis-proline residues impart distinctive kinks, and overall the structure most closely resembles that of the N-terminal domain of the bacterial chaperonin, PapD. In the C2 crystal form which we have solved here, two MSP chains are tightly associated in the asymmetric unit and are related by a non-crystallographic 2-fold rotation axis. This arrangement almost certainly represents the MSP dimer that is present in solution. Additionally, the arrangement of two MSP dimers at one of the crystallographic 2-fold axes in the 215 A unit cell suggests a possible mode for the assembly of MSP into the filaments which promote cell movement. This dimer-dimer association is based on a beta sheet extension mechanism between adjoining MSP monomers which resembles the interaction between PapD and its protein substrate.  相似文献   

16.
A new single copy gene has been isolated from Plasmodium falciparum, by immunoscreening a genomic DNA expression library. The gene appears devoid of introns, displays the classical A + T richness and codon usage of P. falciparum genes, and is transcribed into a 4 kb mRNA in erythrocytic stages. The deduced amino acid sequence corresponds to a 1056 residue protein (122 kDa) containing the canonical HExxHx18E signature of zinc-metallopeptidase active sites of the M1 family at position 467-490, a downstream conserved tyrosine residue involved in catalysis in position 551, and the GAMEN conserved motif characteristic of aminopeptidases in the M1 family, at position 431-435. The greatest similarities were found with aminopeptidases N of Escherichia coli and Haemophilius influenza (more than 80% identical residues in the canonical signature of the active site) but significant similarities centred on the active site region exist with all other members of the M1 family such as other prokaryotic aminopeptidases, eukaryotic aminopeptidases A and N and leukotriene A4 hydrolases (40-50% identical residues in the canonical signature of the active site). A polyclonal serum raised to a synthetic peptide deduced from the gene labelled schizont proteins of 96 and 68 kDa purified to homogeneity and both displaying aminopeptidase activity, as well as cytoplasmic structures in schizont stages.  相似文献   

17.
Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.  相似文献   

18.
The previously detected Rieske iron-sulfur protein from the membranes of the thermoacidophile Sulfolobus acidocaldarius [Anemüller, S., et al. (1993) FEBS Lett. 318, 61-64] was purified to electrophoretic homogeneity and the N-terminal amino acids determined. The apparent molecular weight was estimated to be 32 kDa. The reduced protein displays a rhombic EPR spectrum with gxyz = 1.768, 1.895, 2.035. The average g-value of 1.902 is typical for nitrogen ligand-containing clusters. EPR spin quantification and the iron content indicate the presence of one [2Fe-2S] cluster. The purified protein displays ubiquinol cytochrome c reductase activity. The pH optimum of this reaction is temperature dependent and was determined to be pH 7 at 56 degrees C. The results presented in this study clearly prove that the Sulfolobus Rieske protein belongs to the family of the true Rieske iron-sulfur proteins.  相似文献   

19.
The quantitative contribution of chaperonin GroEL to protein folding in E. coli was analyzed. A diverse set of newly synthesized polypeptides, predominantly between 10-55 kDa, interacts with GroEL, accounting for 10%-15% of all cytoplasmic protein under normal growth conditions, and for 30% or more upon exposure to heat stress. Most proteins leave GroEL rapidly within 10-30 s. We distinguish three classes of substrate proteins: (I) proteins with a chaperonin-independent folding pathway; (II) proteins, more than 50% of total, with an intermediate chaperonin dependence for which normally only a small fraction transits GroEL; and (III) a set of highly chaperonin-dependent proteins, many of which dissociate slowly from GroEL and probably require sequestration of aggregation-sensitive intermediates within the GroEL cavity for successful folding.  相似文献   

20.
All eight of the CCT1-CCT8 genes encoding the subunits of the Cct chaperonin complex in Saccharomyces cerevisiae have been identified, including three that were uncovered by the systematic sequencing of the yeast genome. Although most of the properties of the eukaryotic Cct chaperonin have been elucidated with mammalian systems in vitro, studies with S. cerevisiae conditional mutants revealed that Cct is required for assembly of microtubules and actin in vivo. Cct subunits from the other yeasts, Candida albicans and Schizosaccharomyces pombe, also have been identified from partial and complete DNA sequencing of genes. Cct8p from C. albicans, the only other completely sequenced Cct protein from a fungal species other than S. cerevisiae, is 72% and 61% similar to the S. cerevisiae and mouse Cct8 proteins, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号