首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The misfit dislocations at α‐Fe2O3/α‐Al2O3 heterostructure interfaces were investigated by high‐resolution transmission electron microscopy (HRTEM), geometric phase analysis (GPA) and dislocation density tensor analysis. When imaged along the [110] direction, the misfit dislocation core is a mixed‐type, which can be characterised by one extra (102) plane and one extra (104) plane of α‐Al2O3. Dislocation density tensor analysis gave a very high accuracy in determining the corresponding Burgers vectors of two extra half‐planes. By comparing the measured Burgers vectors with theoretical ones, we are able to determine local rotations in the dislocation core region: the (102) plane is rotated clockwise 6.25° and the (104) plane is rotated anticlockwise 4.81°. Such a local rotation is favourable from the viewpoint of both energy and function to relax lattice misfit.  相似文献   

2.
A python module (HRTEMFringeAnalyzer ) is reported to evaluate the local crystallinity of samples from high‐resolution transmission electron microscopy images in a mostly automated fashion. The user only selects the size of a square analyser window and a step size which translates the window in the micrograph. Together they define the resolution of the results obtained. Regions where fringe patterns are visible are identified and their lattice spacing d and direction ? as well as the corresponding mean errors σ determined. is proportional to the coherence length of the structure, whereas is a measure of how well the direction of the fringes is defined. Maps of these four indicators are computed. The performance of the program is demonstrated on two very different samples: ill‐crystalline carbon deposits on a coked Ni/LFNO (reduced LaFe0.8Ni0.2O) catalyst and well‐crystallized nanoparticles of zinc doped ceria. In the latter case, the automatic segmentation of large aggregates into individual crystalline domains is achieved by ? maps.  相似文献   

3.
Fibre‐top probes are self‐aligned, all optical devices obtained by carving a cantilever on top of a 125‐m diameter single‐mode optical fibre. In this paper, we show that this design can be adapted to smaller fibres as well. We evaluated the performance of a 20‐m diameter probe in contact mode atomic force microscopy (AFM) and that of a 50‐m diameter probe in nanoindentation measurements. AFM images proved to be accurate both in air and water, although some distortion was observed because of the mechanical bending of the fibre during scanning. Indentation curves resembled those obtained with larger devices. The maximum indentation depth, however, is limited by the small dimensions of the cantilever.  相似文献   

4.
A typical quadruple node (QN) of triple junctions (TJs) of grain boundaries (GBs) in a Eu2+‐doped KCl0.52Br0.48 solid solution is investigated from the geometrical point of view by epifluorescence microscopy using the doping ion as a fluorochrome. The excitation and fluorescence optical properties of the fluorochrome were previously characterised by spectrophotometry whereas the structural nature of the studied material as well as its Bravais lattice type, unit cell size and long‐range translational order degree was determined by X‐ray diffraction. A three‐dimensional reconstruction was built from the microscopy images of different optical cross‐sections of the studied arrangement of crystal defects. In the close vicinity of the QN, the studied arrangement of crystal defects adopts the geometry of a collapsed tristetrahedron which, centred at the QN, has its legs along the TJs and, hence, has its faces as collapsed in pairs into the GBs. The angles defined by different TJ couples as well as the dihedral angles defined by the different GB couples meeting in every TJ were measured at the QN site. All, the image recording and stacking as well as the measuring procedures are carefully described. The measured TJ angles (97°, 117°, 95°, 117°, 99° and 130° ± 2°) depart from the characteristic angle (109.47°) of a tetrahedron whereas the measured GB angles (101°, 119°, 140°; 125°, 127°, 108°; 133°, 109°, 119°; 129°, 99° and 132° ± 2°) depart from the angular argument (120°) of a 3‐fold symmetry rotation indicating that, in the close neighbourhood of the QN, the studied arrangement of crystal defects is structurally unstable. Such an instability is associated with an observed mismatch in orientation (by angles of 20°, 15°, 33° and 30° ± 2°) between the TJs and some <111> zone axis matrix lattice crystallographic directions ([], [11], [11] and [11]), respectively). Local variations in anionic composition, existing within the solid solution matrix, are discussed to be responsible for this mismatching and, therefore, for the observed structural instability.  相似文献   

5.
In the present study, Spark Plasma Sintered (SPSed) aluminium matrix composites were severely deformed through Friction stir processing (FSP). Pure aluminium powders and bimodal sized Al2O3 particles (80 nm and 25 m) were firstly mixed by ball milling and then consolidated by spark plasma sintering. The effect of the heat input as well the bimodal particle size of the alumina on the materials’ microstructure and texture development was evaluated by electron back scattered diffraction (EBSD) analysis. The EBSD analysis clearly showed that the SPSed nanocomposites possessed bimodal aluminium matrix grain structure as well as a crystallography characterised by random texture. In addition, microstructural examination revealed that the partial recrystallisation occurred during SPS for all the nanocomposites. Also, it is revealed that the Zener pinning effect of Al2O3 nanoparticles retarded recrystallised grain growth following recrystallisation during FSP and then leading to grain refinement of the aluminium. The results revealed that the heat generated during FSP has a remarkable effect on the grain distribution as well as on the crystallographic orientation. Also, a mixture of {112} <110> shear elements and an ideal strong B/ component were observed. The microstructural changes, occurred during FSP in the stir zone region for Al‐Al2O3 nanocomposites, were attributed to both the discontinuous along with the continuous recrystallisation (DDRX/CDRX). It should be pointed out that with increasing the heat input, recrystallised grains portion increased.  相似文献   

6.
We introduce noncontact optical microscopy and optical scattering to characterize asphalt binder microstructure at temperatures ranging from 15°C to 85°C for two compositionally different asphalt binders. We benchmark optical measurements against rheometric measurements of the magnitude of the temperature‐dependent bulk complex shear modulus . The main findings are: (1) Elongated (~5 × 1 μm), striped microstructures (known from AFM studies as ‘bees’ because they resemble bumble‐bees) are resolved optically, found to reside primarily at the surface and do not reappear immediately after a single heating–cooling cycle. (2) Smaller (~1 μm2) microstructures with no observable internal structure (hereafter dubbed ‘ants’), are found to reside primarily in the bulk, to persist after multiple thermal cycles and to scatter light strongly. Optical scattering from ‘ants’ decreases to zero with heating from 15°C to 65°C, but recovers completely upon cooling back to 15°C, albeit with distinct hysteresis. (3) Rheometric measurements of reveal hysteresis that closely resembles that observed by optical scatter, suggesting that thermally driven changes in microstructure volume fraction cause corresponding changes in .  相似文献   

7.
In hexagonal materials, ( a+c ) dislocations are typically observed to dissociate into partial dislocations. Edge ( a+c ) dislocations are introduced into (0001) nitride semiconductor layers by the process of plastic relaxation. As there is an increasing interest in obtaining relaxed InGaN buffer layers for the deposition of high In content structures, the study of the dissociation mechanism of misfit ( a+c ) dislocations laying at the InGaN/GaN interface is then crucial for understanding their nucleation and glide mechanisms. In the case of the presented plastically relaxed InGaN layers deposited on GaN substrates, we observe a trigonal network of ( a+c ) dislocations extending at the interface with a rotation of 3° from <1 1 ¯ $\bar 1$ 00> directions. High-resolution microscopy studies show that these dislocations are dissociated into two Frank–Shockley 1/6<2 2 ¯ $\bar 2$ 03> partial dislocations with the I1 BSF spreading between them. Atomistic simulations of a dissociated edge ( a+c ) dislocation revealed a 3/5-atom ring structure for the cores of both partial dislocations. The observed separation between two partial dislocations must result from the climb of at least one of the dislocations during the dissociation process, possibly induced by the mismatch stress in the InGaN layer.  相似文献   

8.
The geometry and spatial orientation of a typical arrangement of four triple junctions and six grain boundaries sharing a common quadruple node in a Eu2+‐doped KI crystal are investigated by epifluorescence microscopy using the proper doping ion as a fluorochrome. To achieve this, an electronic three‐dimensional reconstruction of the studied arrangement of crystal defects was built from microscopy images of different optical cross‐sections of this arrangement. Previously, the doping ions were induced, by subjecting the crystal to a long annealing treatment, to form europium precipitates into the crystal grain boundaries. The optical properties of these precipitates were characterized by fluorescence spectrophotometry and used to tailor properly the microscope fluorescence mirror unit, whereas the single‐crystal character of the microscope samples was tested by X‐ray diffraction. By inspecting the reconstruction under handling, the dihedral angles between the grain boundaries that meet at a common triple junction as well as the angles between the triple junctions sharing the quadruple node were successfully measured at the quadruple node site. The measuring procedures are carefully described. The resulting values (132º, 109º, 119º, 125º, 111º, 124º, 124º, 111º, 125º, 129º, 109º and 122º ± 2º) for the dihedral angles depart for some few degrees from the characteristic angle (120º) of a 3‐fold symmetry rotation, whereas the resulting values (104º, 111º, 117º, 103º, 100º and 121º ± 2º) for the triple junction angles are not far from the characteristic angle (109.47º) between the legs of a tetrahedron. These results, indicating that in the close neighbourhood of the quadruple node the studied arrangement of crystal defects deviates from a state of full structural stability, allow this arrangement to be fairly modelled in such a neighbourhood by a distorted tetrahedron. The angles between the studied triple junctions and the host lattice directions [11], [11], [11] and [] were also measured at the quadruple node site, and the resulting values (8º, 7º, 6º and 8º ± 2º, respectively) indicate that a symmetry mismatching exists between the tetrahedral model of the studied Eu2+‐decorated arrangement of crystal defects and the KI matrix cubic crystal lattice. This symmetry mismatching is discussed to be responsible for the observed deviation from structural stability.  相似文献   

9.
We report the first demonstration of a fast wavelength‐switchable 340/380 nm light‐emitting diode (LED) illuminator for Fura‐2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura‐2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura‐2. Using this illuminator, we have shown that Fura‐2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA‐201 cells and while utilising the 150 s switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura‐2.  相似文献   

10.
The objective of this study was to compare expert versus fractal analysis as new methods to evaluate branchial lamellar pathology in European sea bass Dicentrarchus labrax (Linnaeus, 1758) experimentally exposed to cadmium and to terbuthylazine. In particular, guided expert quantitative and fractal analysis were performed on selected images from semithin sections to test possible differences according to exposure class (unexposed, cadmium exposed, or terbuthylazine exposed) and the discrimination power of the two methods. With respect to guided expert quantitative analysis, the following elementary pathological features were assessed according to pre‐determined cover classes: ‘epithelial lifting’, ‘epithelial shrinkage’, ‘epithelial swelling’, ‘pillar cells coarctation’, ‘pillar cells detachment’, ‘channels fusion’, ‘chloride cells swelling’ and ‘chloride cells invasion’. Considering fractal analysis, DB (box dimension), DM (mass dimension), (mean fractal dimension) as fractal dimensions and lacunarity from DM and scan types were calculated both from the outlined and skeletonized (one pixel wide lines) images. Despite significant differences among experimental classes, only expert analysis provided good discrimination with correct classification of 91.7 % of the original cases, and of 87.5 % of the cross‐validated cases, with a sensitivity of 95.45 % and 91.3 %, respectively, and a specificity of 75 % in both cases. Guided expert quantitative analysis appears to be a reliable method to objectively characterize fish gill pathology and may represent a powerful tool in environmental biomonitoring to ensure proper standardization and reproducibility. Though fractal analysis did not equal the discrimination power of the expert method, it certainly warrants further study to evaluate local variations in complexity or possible multiple scaling rules.  相似文献   

11.
Blind source separation methods aim to split information into the original sources. In histology, each dye component attempts to specifically characterize different microscopic structures. In the case of the hematoxylin–eosin stain, universally used for routine examination, quantitative analysis may often require the inspection of different morphological signatures related mainly to nuclei patterns, but also to stroma distribution. Stain separation is usually a preprocessing operation that is transversal to different applications. This paper presents a novel colour separation method that finds the hematoxylin and eosin clusters by projecting the whole space to a folded surface connecting the distributions of a series of planes that divide the cloud of H&E tones. The proposed method produces density maps closer to those obtained with the colour mixing matrices set by an expert, when comparing with the density maps obtained using nonnegative matrix factorization (NMF), independent component analysis (ICA) and a state‐of‐the‐art method. The method has outperformed three baseline methods, NMF, Macenko and ICA, in about 8%, 12% and 52% for the eosin component, whereas this was about 4%, 8% and 26% for the hematoxylin component.  相似文献   

12.
We investigated the association between human polymorphonuclear leukocytes (PMNs) and non‐opsonized Tannerella forsythia ATCC 43037 displaying a serum‐resistant surface layer (S‐layer). When PMNs were mixed with T. forsythia in suspension, the cells phagocytosed T. forsythia cells. Nitro blue tetrazolium (NBT) reduction, indicative of production, was observed by light microscopy; cerium (Ce) perhydroxide deposition, indicative of H2O2 production, was observed by electron microscopy. We examined the relationship between high‐molecular‐weight proteins of the S‐layer and Ce reaction (for T. forsythia phagocytosis) using electron microscopic immunolabeling. Immunogold particles were localized within the PMNs and on cell surfaces, labelling at the same Ce‐reacted sites where the S‐layer was present. We then used energy dispersive spectroscopy (EDS)‐scanning transmission electron microscope (STEM) to perform Ce and nitrogen (N) (for S‐layer immunocytochemistry) elemental analysis on the phagocytosed cells. That is, the elemental mapping and analysis of N by EDS appeared to reflect the presence of the same moieties detected by the 3,3′‐diaminobenzidine‐tetrahydrochloride (DAB) reaction with horseradish peroxidase (HRP)‐conjugated secondary antibodies, instead of immunogold labeling. We focused on the use of EDS‐STEM to visualize the presence of N resulting from the DAB reaction. In a parallel set of experiments, we used EDS‐STEM to perform Ce and gold (Au; from immunogold labeling of the S‐layer) elemental analysis on the same phagocytosing cells.  相似文献   

13.
Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as‐spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (nP and) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration.  相似文献   

14.
Since the recent boost in the usage of electron microscopy in life‐science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused‐ion beam scanning electron microscopy (FIB‐SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold‐labelled breast cancer SKBR3 cells was to visualise gold‐labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p < 0.001) in the number of gold particles of selected cells per 0.6 m2 cell surface: on average a flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back‐scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB‐SEM. Cross‐sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell model systems and multicellular organisms.  相似文献   

15.
The ability to accurately and efficiently quantify muscle morphology is essential to determine the physiological relevance of a variety of muscle conditions including growth, atrophy and repair. There is agreement across the muscle biology community that important morphological characteristics of muscle fibres, such as cross‐sectional area, are critical factors that determine the health and function (e.g. quality) of the muscle. However, at this time, quantification of muscle characteristics, especially from haematoxylin and eosin stained slides, is still a manual or semi‐automatic process. This procedure is labour‐intensive and time‐consuming. In this paper, we have developed and validated an automatic image segmentation algorithm that is not only efficient but also accurate. Our proposed automatic segmentation algorithm for haematoxylin and eosin stained skeletal muscle cross‐sections consists of two major steps: (1) A learning‐based seed detection method to find the geometric centres of the muscle fibres, and (2) a colour gradient repulsive balloon snake deformable model that adopts colour gradient in colour space. Automatic quantification of muscle fibre cross‐sectional areas using the proposed method is accurate and efficient, providing a powerful automatic quantification tool that can increase sensitivity, objectivity and efficiency in measuring the morphometric features of the haematoxylin and eosin stained muscle cross‐sections.  相似文献   

16.
C. HU  S. HUO  W. SHEN  Y. LI  X. HU 《Journal of microscopy》2018,270(3):318-325
The discontinuity of medium at the boundary produces optically anisotropic response which makes reflectance difference microscopy (RDM) a potential method for nanometre‐thickness microstructure measurements. Here, we present the methodology of RDM for the edge measurement of ultrathin microstructure. The RD signal of microstructure's boundary is mathematically deduced according to boundary condition and polarization optics theory. A normal‐incidence RDM setup was built simply with one linear polarizer, one liquid crystal variable retarder and one 5 × objective. Then, the performance of the developed setup was identified using homogenous reflection mirror and high quality linear polarizer. For demonstration, microstructures array with 100 nm step height was measured. The results show that the RD signal is sensitive to the edge and its sign reflects the change direction of the edge. Furthermore, a height sensitivity of better than 10 nm and a spatial resolution of ~3 m offer this technique a good candidate for characterizing ultrathin microstructures.  相似文献   

17.
Most liquid cell transmission electron microscopy (LC TEM) studies focus on nanoparticles or nanowires, in large part because the preparation and study of materials in this size range is straightforward. By contrast, this is not true for samples in the micrometre size range, in large part because of the difficulties associated with sample preparation starting from a ‘bulk’ material. There are also many advantages inherent to the study of micrometre‐sized samples compared to their nanometre‐sized counterparts. Here, we present a liquid cell transmission electron study that employed an innovative sample preparation technique using focused ion beam (FIB) milling to fabricate micrometre‐sized electron transparent lamellae that were then welded to the liquid cell substrate. This technique, for which we have described in detail all of the fabrication steps, allows for samples having dimensions of several square micrometres to be observed by TEM in situ in a liquid. We applied this technique to test whether we could observe and measure in situ dissolution of a crystalline material called wollastonite, a calcium silicate mineral. More specifically, this study was used to observe and record surface dynamics associated with step and terrace edge movement, which are ultimately linked to the overall rate of dissolution. The wollastonite lamella underwent chemical reactions in pure deionized water at ambient temperature in a liquid cell with a 5‐m‐spacer thickness. The movement of surface steps and terraces was measured periodically over a period of almost 5 h. Quite unexpectedly, the one‐dimensional rates of retreat of these surface features were not constant, but changed over time. In addition, there were noticeable quantitative differences in retreat rates as a function crystallographic orientation, indicating that surface retreat is anisotropic. Several bulk rates of dissolution were also determined (1.6–4.2 ? 10?7 mol m?2 s?1) using the rates of retreat of representative terraces and steps, and were found to be within one order of magnitude of dissolution rates in the literature based on aqueous chemistry data.  相似文献   

18.
Precipitates (ppts) in new generation aluminum–lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier–Preston zones, T1 (Al2CuLi), β’ (Al3Zr) and δ’ (Al3Li). The focus was placed on their composition and the presence of minor elements. X‐ray energy‐dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ’ ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy‐loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal‐to‐noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X‐ray spectra confirmed that the detection limit was exceeded for the Zn Kα X‐ray line because the signal‐to‐noise ratio was high enough in that case, which is in agreement with our observations.  相似文献   

19.
Artificial intelligence is nowadays used for cell detection and classification in optical microscopy during post-acquisition analysis. The microscopes are now fully automated and next expected to be smart by making acquisition decisions based on the images. It calls for analysing them on the fly. Biology further imposes training on a reduced data set due to cost and time to prepare the samples and have the data sets annotated by experts. We propose a real-time image processing compliant with these specifications by balancing accurate detection and execution performance. We characterised the images using a generic, high-dimensional feature extractor. We then classified the images using machine learning to understand the contribution of each feature in decision and execution time. We found that the non-linear-classifier random forests outperformed Fisher's linear discriminant. More importantly, the most discriminant and time-consuming features could be excluded without significant accuracy loss, offering a substantial gain in execution time. It suggests a feature-group redundancy likely related to the biology of the observed cells. We offer a method to select fast and discriminant features. In our assay, a 79.6 2.4% accurate classification of a cell took 68.7 3.5 ms (mean SD, 5-fold cross-validation nested in 10 bootstrap repeats), corresponding to 14 cells per second, dispatched into eight phases of the cell cycle, using 12 feature groups and operating a consumer market ARM-based embedded system. A simple neural network offered similar performances paving the way to faster training and classification, using parallel execution on a general-purpose graphic processing unit. Finally, this strategy is also usable for deep neural networks paving the way to optimizing these algorithms for smart microscopy.  相似文献   

20.
A 3D reconstruction of individual fibres in vascular tissue is necessary to understand the microstructure properties of the vessel wall.  The objective of this study is to determine the 3D microstructure of elastin fibres in the adventitia of coronary arteries.  Quantification of fibre geometry is challenging due to the complex interwoven structure of the fibres.  In particular, accurate linking of gaps remains a significant challenge, and complex features such as long gaps and interwoven fibres have not been adequately addressed by current fibre reconstruction algorithms.  We use a novel line Laplacian deformation method, which better deals with fibre shape uncertainty to reconstruct elastin fibres in the coronary adventitia of five swine. A cost function, based on entropy and Euler Spiral, was used in the shortest path search. We find that mean diameter of elastin fibres is 1.67 ± 1.42 m and fibre orientation is clustered around two major angles of 8.9? and 81.8?.  Comparing with CT‐FIRE, we find that our method gives more accurate estimation of fibre width.  To our knowledge, the measurements obtained using our algorithm represent the first investigation focused on the reconstruction of full elastin fibre length.  Our data provide a foundation for a 3D microstructural model of the coronary adventitia to elucidate the structure–function relationship of elastin fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号