首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate Ar ion‐milling rates and Ga‐ion induced damage on sample surfaces of Si and GaAs single crystals prepared by focused ion beam (FIB) method for transmission electron microscopy observation. The convergent beam electron diffraction technique with Bloch simulation is used to measure the thickness of the Ar‐ion milled samples to calculate the milling rates of Si and GaAs single crystals. The measurement shows that an amorphous layer is formed on the sample surface and can be removed by further Ar‐ion milling. In addition, the local symmetry breaking induced by FIB is investigated using quantitative symmetry measurement. The FIBed‐GaAs sample shows local symmetry breaking after FIB milling, although the FIBed‐Si sample has no considerable symmetry breaking.  相似文献   

2.
3.
In this paper, synthetic fluorapatite–gelatine composite particles are prepared for transmission electron microscopy (TEM) studies using two methods based on focused ion beam (FIB) milling. TEM studies on the FIB‐prepared specimens are compared with TEM observations on samples prepared using an ultramicrotome. The results show that ultramicrotome slicing causes significant cracking of the apatite, whereas the ion beam can be used to make high‐quality, crack‐free specimens with no apparent ion beam‐induced damage. The TEM observations on the FIB‐prepared samples confirm that the fluorapatite composite particles are composed of elongated, preferentially orientated grains and reveal that the grain boundaries contain many small interstices filled with an amorphous phase.  相似文献   

4.
Focused ion beam‐scanning electron microscopy (FIB‐SEM) is a widely used and easily operational equipment for three‐dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB‐SEM with In‐Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In‐Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed.  相似文献   

5.
Nanoporous materials play an important role in modern batteries as well as fuel cells. The materials microstructure needs to be analyzed as it determines the electrochemical properties. However, the microstructure is too fine to be resolved by microcomputed tomography. The method of choice to analyze the microstructure is focused ion beam nanotomography (FIB‐SEM). However, the reconstruction of the porous 3D microstructure from FIB‐SEM image data in general has been an unsolved problem so far. In this paper, we present a new method using morphological operations. First, features are extracted from the data. Subsequently, these features are combined to an initial segmentation, that is then refined by a constrained watershed transformation. We evaluate our method with synthetic data, generated by a simulation of the FIB‐SEM imaging process. We compare the ground truth in the simulated data to the segmentation result. The new method is found to produce a much smaller error than existing techniques.  相似文献   

6.
Focused ion beam and scanning electron microscope (FIB‐SEM) instruments are extensively used to characterize nanoscale composition of composite materials, however, their application to analysis of organic corrosion barrier coatings has been limited. The primary concern that arises with use of FIB to mill organic materials is the possibility of severe thermal damage that occurs in close proximity to the ion beam impact. Recent research has shown that such localized artefacts can be mitigated for a number of polymers through cryogenic cooling of the sample as well as low current milling and intelligent ion beam control. Here we report unexpected nonlocalized artefacts that occur during FIB milling of composite organic coatings with pigment particles. Specifically, we show that FIB milling of pigmented polysiloxane coating can lead to formation of multiple microscopic voids within the substrate as far as 5 μm away from the ion beam impact. We use further experimentation and modelling to show that void formation occurs via ion beam heating of the pigment particles that leads to decomposition and vaporization of the surrounding polysiloxane. We also identify FIB milling conditions that mitigate this issue.  相似文献   

7.
The size, shape and distribution of different phases in thermoplastic polyolefin (TPO) blends and composites are critical to the properties of the materials, but can be difficult to characterise. Here we report the combination of heavy metal staining and focused ion beam – scanning electron microscopy (FIB‐SEM) to reveal the three‐dimensional (3D) structure of an elastomer‐modified poly(propylene) and a talc filled elastomer‐modified poly(propylene). High‐quality, high‐resolution serial images were collected and the 3D structures were characterised quantitatively.  相似文献   

8.
The preparation of thinned lamellae from bulk samples for transmission electron microscopy (TEM) analysis has been possible in the focussed ion beam scanning electron microscope (FIB‐SEM) for over 20 years via the in situ lift‐out method. Lift‐out offers a fast and site specific preparation method for TEM analysis, typically in the field of materials science. More recently it has been applied to a low‐water content biological sample (Rubino 2012). This work presents the successful lift‐out of high‐water content lamellae, under cryogenic conditions (cryo‐FIB lift‐out) and using a nanomanipulator retaining its full range of motion, which are advances on the work previously done by Rubino (2012). Strategies are explored for maintaining cryogenic conditions, grid attachment using cryo‐condensation of water and protection of the lamella when transferring to the TEM. Microsc. Res. Tech. 79:298–303, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
A combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning‐transmission electron microscopy (STEM) using high‐angle annular‐dark‐field (HAADF) imaging, focussed ion beam‐ scanning electron microscopy (FIB‐SEM) tomography, selected area electron diffraction with beam precession (PED), as well as spatially resolved energy‐dispersive X‐ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS), was used to investigate topologically close‐packed (TCP) phases, occurring in the CMSX‐4 superalloy subjected to high temperature annealing and creep deformation. Structural and chemical analyses were performed to identify the TCP phases and provide information concerning the compositional partitioning of elements between them. The results of SEM and FIB‐SEM tomography revealed the presence of merged TCP particles, which were identified by TEM and PED analysis as coprecipitates of the μ and P phases. Inside the TCP particles that were several micrometres in size, platelets of alternating μ and P phases of nanometric width were found. The combination of STEM‐HAADF imaging with spatially resolved EDS and EELS microanalysis allowed determination of the significant partitioning of the constituent elements between the μ and P phases.  相似文献   

10.
We have investigated the Ga+ ion‐damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga+ ion‐damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant.  相似文献   

11.
Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB‐SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three‐dimensional data, FIB‐SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block‐face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo‐) transmission electron microscopy. Here, we will present an overview of the development of FIB‐SEM and discuss a few points about sample preparation and imaging.  相似文献   

12.
A robust and versatile sample preparation technique for the fabrication of cylindrical pillars for imaging by X‐ray nano‐computed tomography (nano‐CT) is presented. The procedure employs simple, cost‐effective laser micro‐machining coupled with focused‐ion beam (FIB) milling, when required, to yield mechanically robust samples at the micrometre length‐scale to match the field‐of‐view (FOV) for nano‐CT imaging. A variety of energy and geological materials are exhibited as case studies, demonstrating the procedure can be applied to a variety of materials to provide geometrically optimised samples whose size and shape are tailored to the attenuation coefficients of the constituent phases. The procedure can be implemented for the bespoke preparation of pillars for both lab‐ and synchrotron‐based X‐ray nano‐CT investigations of a wide range of samples.  相似文献   

13.
Focused ion beam (FIB) techniques can prepare site‐specific transmission electron microscopy (TEM) cross‐section samples very quickly but they suffer from beam damage by the high energy Ga+ ion beam. An amorphous layer about 20–30 nm thick on each side of the TEM lamella and the supporting carbon film makes FIB‐prepared samples inferior to the traditional Ar+ thinned samples for some investigations such as high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). We have developed techniques to combine broad argon ion milling with focused ion beam lift‐out methods to prepare high‐quality site‐specific TEM cross‐section samples. Site‐specific TEM cross‐sections were prepared by FIB and lifted out using a Narishige micromanipulator onto a half copper‐grid coated with carbon film. Pt deposition by FIB was used to bond the lamellae to the Cu grid, then the coating carbon film was removed and the sample on the bare Cu grid was polished by the usual broad beam Ar+ milling. By doing so, the thickness of the surface amorphous layers is reduced substantially and the sample quality for TEM observation is as good as the traditional Ar+ milled samples.  相似文献   

14.
Trustworthy preparation and contacting of micron‐sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all‐solid‐state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all‐solid‐state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9Ba0.1F2.9 half‐cell are presented. Microsc. Res. Tech. 79:615–624, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
The focused ion beam (FIB) technology has drawn considerable attention in diverse research fields. FIB can be used to mill samples at the nanometer scale by using an ion beam derived from electrically charged liquid gallium (Ga). This powerful technology with accuracy at the nanometer scale is now being applied to life science research. In this study, we show the potential of FIB as a new tool to investigate the internal structures of cells. We sputtered Ga+ onto the surface or the cross section of animal cells to emboss the internal structures of the cell. Ga+ sputtering can erode the cell surface or the cross section and thus emboss the cytoskeletons quasi‐3 dimensionally. We also identified the embossed structures by comparing them with fluorescent images obtained via confocal laser microscopy because the secondary ion micrographs did not directly provide qualitative information directly. Furthermore, we considered artifacts during the FIB cross sectioning of cells and propose a way to prevent undesirable artifacts. We demonstrate the usefulness of FIB to observe the internal structures of cells. Microsc. Res. Tech. 76:290–295, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X‐ray spectroscopy; and transmission electron microscopy (TEM) for high‐resolution imaging. FIB was used to prepare thin sections of the cell‐material interface for TEM, or for three‐dimensional electron tomography. Cells were cultured on laser‐sintered Ti‐6Al‐4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell‐material cross‐sectional interface at the single cell level across multiple high‐resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell‐material interface.  相似文献   

17.
聚焦离子束系统以其超强的微加工及微分析能力在微电子领域的地位越来越重要。随着聚焦离子束系统的发展,离子束和电子束结合的双束聚焦离子束系统已经普遍被使用。双束聚焦离子束系统结合了高能离子束和电子束的优点,采用液态镓离子源通过高压引出,并经偏转会聚为离子束实现样品加工,利用高能电子束扫描样品成像,可以做到边加工边观察。本文介绍了双束聚焦离子束系统的组成,主要部件的工作原理及在微电子领域的主要应用,并详述了主要应用的操作方法。  相似文献   

18.
Fabrication of metallic Au nanopillars and linear arrays of Au‐containing nanodots for plasmonic waveguides is reported in this article by two different processes—focused ion beam (FIB) milling of deposited thin films and electron beam‐induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi‐step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au‐coated glass, quartz, and mica slides as well as cleaved 4‐mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium‐coated glass substrates. Each method allows formation of nanostructures such that the plasmon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50–70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures. SCANNING 31: 139–146, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
A facile nonsubjective method was designed to measure porous nonconductive iron oxide film thickness using a combination of a focused ion beam (FIB) and scanning electron microscopy. Iron oxide films are inherently nonconductive and porous, therefore the objective of this investigation was to optimize a methodology that would increase the conductivity of the film to facilitate high resolution imaging with a scanning electron microscopy and to preserve the porous nature of the film that could potentially be damaged by the energy of the FIB. Sputter coating the sample with a thin layer of iridium before creating the cross section with the FIB decreased sample charging and drifting, but differentiating the iron layer from the iridium coating with backscattered electron imaging was not definitive, making accurate assumptions of the delineation between the two metals difficult. Moreover, the porous nature of the film was lost due to beam damage following the FIB process. A thin layer plastication technique was therefore used to embed the porous film in epoxy resin that would provide support for the film during the FIB process. However, the thickness of the resin created using conventional thin layer plastication processing varied across the sample, making the measuring process only possible in areas where the resin layer was at its thinnest. Such variation required navigating the area for ideal milling areas, which increased the subjectivity of the process. We present a method to create uniform thin resin layers, of controlled thickness, that are ideal for quantifying the thickness of porous nonconductive films with FIB/scanning electron microscopy.  相似文献   

20.
To characterize complex, three‐dimensional nanostructures, modern microscopy techniques are needed, such as electron tomography and focused ion beam (FIB) sectioning. The aim of this study was to apply these two techniques to characterize TiO2 nanotubes in terms of their size, shape, volume, porosity, geometric surface area, and specific surface area (SSA). For these experiments, titania nanotubes were fabricated by means of the electrochemical oxidation of titanium at a voltage of 20 V for 2 hr followed by heat treatment at 450°C for 3 hr to change the amorphous structure into a crystalline anatase structure. The quantitative data obtained from the FIB and electron tomography reconstructions show a high similarity in porosity and some differences in SSA. These might be the result of differences in resolution between the two reconstruction techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号