首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We characterized atherosclerotic plaque components with a novel cryo‐imaging system in lieu of standard histological methods commonly used for imaging validation and research endpoints. We aim to accurately identify plaque tissue types from fresh cadaver specimens rapidly (less than 5 h) in three dimensions for large specimens (up to 4 cm vessel segments). A single‐blind validation study was designed to determine sensitivity, specificity and inter‐rater agreement (Fleiss' Kappa) of cryo‐imaging tissue types with histology as the gold standard. Six naïve human raters identified 344 tissue type samples in 36 cryo‐image sets after being trained. Tissue type sensitivities are as follows: greater than 90% for adventitia, media‐related, smooth muscle cell ingrowth, external elastic lamina, internal elastic lamina, fibrosis, dense calcification and haemorrhage; greater than 80% for lipid and light calcification; and greater than 50% for cholesterol clefts. Specificities were greater than 95% for all tissue types. The results demonstrate convincingly that cryo‐imaging can be used to accurately identify most tissue types. If the cryo‐imaging data are entered into visualization software, three‐dimensional renderings of the plaque can be generated to visualize and quantify plaque components.  相似文献   

2.
Glioblastoma multiforme (GBM‐WHO grade IV) is the most common and the most aggressive form of brain tumors in adults with the median survival of 10–12 months. The diagnostic detection of extracellular matrix (ECM) component in the tumour microenvironment is of prognostic value. In this paper, the fibrillar collagen deposition associated with vascular elements in GBM were investigated in the fresh specimens and unstained histological slices by using multiphoton microscopy (MPM) based on two‐photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our study revealed the existence of fibrillar collagen deposition in the adventitia of remodelled large blood vessels and in glomeruloid vascular structures in GBM. The degree of fibrillar collagen deposition can be quantitatively evaluated by measuring the adventitial thickness of blood vessels or calculating the ratio of SHG pixel to the whole pixel of glomeruloid vascular structure in MPM images. These results indicated that MPM can not only be employed to perform a retrospective study in unstained histological slices but also has the potential to apply for in vivo brain imaging to understand correlations between malignancy of gliomas and fibrillar collagen deposition.  相似文献   

3.
Nonlinear microscopy techniques are being increasingly used to perform in vivo studies in dermatology. These methods enable us to investigate the morphology and monitor the physiological process in the skin by the use of femtosecond lasers operating in the red, near‐infrared spectral range (680–1,300 nm). In this work we used two different techniques that require no labeling: second harmonic generation (SHG) for collagen detection and coherent anti‐Stokes Raman scattering (CARS) to assess lipid distribution in genetically obese murine skin. Obesity is one of the most serious public health problems due to its high and increasing prevalence and the associated risk of type 2 diabetes and cardiovascular diseases. Other than these diseases, nearly half of patients with diabetes mellitus suffer from dermatological complications such as delayed wound healing, foot ulcers and several other skin changes. In our experiment we investigated and followed the effects of obesity on dermal collagen alterations and adipocyte enlargement using a technique not reported in the literature so far. Our results indicate that the in vivo SHG and ex vivo CARS imaging technique might be an important tool for diagnosis of diabetes‐related skin disorders in the near future. Microsc. Res. Tech. 78:823–830, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The ex vivo cornea of porcine eyes has been studied with second‐harmonic microscopy with a laboratory‐built system to examine the structure of collagen fibrils at different length scales, as well as the image dependence on polarization and wavelength of the illumination source. We found that collagen fibrils can effectively be visualized with second‐harmonic microscopy, in agreement with previous findings, at different wavelengths of the illumination. The same laser source used for imaging may also be used to induce changes to the corneal tissues that are observable both in the linear and second‐harmonic imaging channels. Such studies are essential first steps towards a future high‐resolution optical characterization technique for simultaneous corneal surgery and wound healing of the human eye.  相似文献   

5.
We have developed a real‐time imaging technique for diagnosis of kidney diseases which is composed of two steps, staining renal cells safely with food dyes and optical sectioning of living renal tissue to obtain histological images by multiphoton microscopy (MPM). Here, we demonstrated that the MPM imaging with food dyes, including erythrosine and indigo carmine, could be used as fluorescent agents to visualize renal functions and structures such as glomerular bloodstreams, glomerular filtration, and morphology of glomeruli and renal tubules. We also showed that the kidneys of IgA nephropathy model‐mice stained with the food dyes presented histopathological characteristics different from those observed in normal kidneys. The use of the food dyes enhances the quality of tissue images obtained by MPM and offers the potential to contribute to a clinical real‐time diagnosis of kidney diseases. Microsc. Res. Tech. 78:847–858, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
In this paper, multiphoton microscopy (MPM), based on two‐photon excited fluorescence and second harmonic generation signals, was used to image microstructures of human rectal mucosa and submucosa. The morphology and distribution of the main components in mucosa layer, goblet cells, intestinal glands, and a little collagen fibers have been clearly monitored, and the content and distribution of collagen, elastic fibers, and blood vessels in submucosa layer have also been distinctly obtained. The variation of these components is very relevant to the pathology in gastrointestinal system, especially early rectal cancer. Our results indicate that the MPM technique has the potential application in vivo in the clinical diagnosis and monitoring of early rectal cancer. SCANNING 32: 347–350, 2010. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Multiphoton excitation laser scanning microscopy, relying on the simultaneous absorption of two or more photons by a molecule, is one of the most exciting recent developments in biomedical imaging. Thanks to its superior imaging capability of deeper tissue penetration and efficient light detection, this system becomes more and more an inspiring tool for intravital bulk tissue imaging. Two‐photon excitation microscopy including 2‐photon fluorescence and second harmonic generated signal microscopy is the most common multiphoton microscopic application. In the present review we take diverse ocular tissues as intravital samples to demonstrate the advantages of this approach. Experiments with registration of intracellular 2‐photon fluorescence and extracellular collagen second harmonic generated signal microscopy in native ocular tissues are focused. Data show that the in‐tandem combination of 2‐photon fluorescence and second harmonic generated signal microscopy as two‐modality microscopy allows for in situ co‐localization imaging of various microstructural components in the whole‐mount deep intravital tissues. New applications and recent developments of this high technology in clinical studies such as 2‐photon‐controlled drug release, in vivo drug screening and administration in skin and kidney, as well as its uses in tumourous tissues such as melanoma and glioma, in diseased lung, brain and heart are additionally reviewed. Intrinsic emission two‐modal 2‐photon microscopy/tomography, acting as an efficient and sensitive non‐injurious imaging approach featured by high contrast and subcellular spatial resolution, has been proved to be a promising tool for intravital deep tissue imaging and clinical studies. Given the level of its performance, we believe that the non‐linear optical imaging technique has tremendous potentials to find more applications in biomedical fundamental and clinical research in the near future.  相似文献   

8.
Papulonodular mucinosis (PM) is a cutaneous clue to the presence and activity of silent lupus erythematosus (LE), but the exact pathogenesis is still under secret. Moreover, the currently available treatments for PM are not satisfactory. To demonstrate the possibility of multiphoton microscopy (MPM) to trace the pathological state of PM and evaluate the treatment efficacy, epidermal and dermal alteration in skin lesion with PM before and after treatment was examined using MPM. Microstructure of epidermis as well as content and distribution of collagen and elastin in dermis were quantified to characterize the pathological states of PM. The results showed significant morphological difference between skin lesion before and after treatment, indicating the possibility of MPM to assess the therapeutic efficacy. With the advancement on MPM miniaturization and enhancement of contrast and depth of imaging, the MPM technique can be applied in in vivo tracking PM formation and progression, and leading the better understanding the PM pathogenesis and mechanism of response to any treatment, helping to establish novel effective therapies for PM. SCANNING 35:22‐27, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high‐quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro‐scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one‐photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two‐photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre‐optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner.  相似文献   

10.
Colorectal carcinoma (CRC) has high mortality and increased incidence rates. An early detection of CRC is very important. Multiphoton microscopy (MPM) with high resolution and high sensitivity is used to effectively distinguish the microstructure changes of normal and mucinous adenocarcinoma slices of ex vivo human colonic tissues. In mucinous adenocarcinoma mucosa, the glands are distorted and elongated, the gland cavity is indistinct, and the mesh collagen fibers are diminished. In the submucosa, the collagens are seriously disordered, elongated, pushed aside, and sparsely visible, the content of elastic fibers is also broken and almost disappearing. Many cancer cells, some in cavity‐like shape full of mucus surrounded by some collagen fibers, occupied the submucosa, which are comparable to hematoxylin‐eosin (HE) stained images. Second harmonic generation and two‐photon excitation fluorescence (SHG/TPEF) intensity ratio can be used further to quantitatively evaluate normality and abnormality. The fast Fourier transform (FFT) images show that the normal collagen fibrils are dense and in random order, and the cancerous collagen is certainly organized. The exploratory results show that it has potential for the development of multiphoton mini‐endoscopy in real‐time early diagnosis of CRC. SCANNING 35: 277‐282, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
We report in vivo nonlinear optical imaging of mouse sciatic nerve tissue by epidetected coherent anti‐Stokes Raman scattering and second harmonic generation microscopy. Following a minimally invasive surgery to open the skin, coherent anti‐Stokes Raman scattering imaging of myelinated axons and second harmonic generation imaging of the surrounding collagen fibres were demonstrated with high signal‐to‐background ratio, three‐dimensional spatial resolution, and no need for labelling. The underlying contrast mechanisms of in vivo coherent anti‐Stokes Raman scattering were explored by three‐dimensional imaging of fat cells that surround the nerve. The epidetected coherent anti‐Stokes Raman scattering signals from the nerve tissues were found to arise from interfaces as well as back reflection of forward coherent anti‐Stokes Raman scattering.  相似文献   

12.
Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three‐dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope‐like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction.  相似文献   

13.
We have used a direct in vivo imaging strategy to investigate the role of c‐Met signalling and kinase activity during the immune response to wounding. Our assay utilizes the optical translucent properties of the zebrafish embryo and demonstrates the versatility of microscopy‐based approach to the screening of compounds for inhibition of the wounding response. We have focussed on the c‐Met pathway as little is known about the influence of c‐Met signalling in immune responses, although it has been suggested that the c‐Met tyrosine kinase receptor signalling pathway may be involved in cytokine secretion and directional migration in immune cells. Using both imaging of fixed zebrafish embryos in combination with digital time lapse microscopy of neutrophils recruited to a wound site, we find that pharmacological inhibition of c‐Met, using a specific inhibitor, modulates the immune response in zebrafish embryos. We have found that inhibition of c‐Met does not prevent the inflammatory response but does appear to limit recruitment and retention of immune cells at the wound site. This work demonstrates the versatility of using direct imaging assays for inhibitor studies and suggests that the HGF/c‐Met signalling cascade plays an important role in the migration of haematopoietic cells in vivo.  相似文献   

14.
Portable confocal scanning optical microscopy (PCSOM) has been specifically developed for the noncontact and nondestructive imaging of early human fossil hard tissues, which here we describe and apply to a 3‐million‐year‐old femur from the celebrated Ethiopian skeleton, “Lucy,” referred to Australopithecus afarensis. We examine two bone tissue parameters that demonstrate the potential of this technology. First, subsurface reflection images from intact bone reveal bone cell spaces, the osteocyte lacunae, whose density is demonstrated to scale negatively with body size, reflecting aspects of metabolism and organismal life history. Second, images of a naturally fractured cross section near to Lucy's femoral mid‐shaft, which match in sign those of transmitted circularly polarized light, reveal relative collagen fiber orientation patterns that are an important indicator of femoral biomechanical efficacy. Preliminary results indicate that Lucy was characterized by metabolic constraints typical for a primate her body size and that in her femur she was adapted to habitual bipedalism. Limitations imposed by the transport and invasive histology of unique or rare fossils motivated development of the PCSOM so that specimens may be examined wherever and whenever nondestructive imaging is required. SCANNING 31: 1–10, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three‐dimensional refractive index maps of weakly scattering, semi‐transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid‐induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far‐field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core–shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert–Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid‐induced optical anisotropy significantly alter far‐field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy.  相似文献   

16.
Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two‐photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long‐term two‐photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer's disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three‐dimensional high‐resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system.  相似文献   

17.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is a powerful tool for chemical analysis at a subcellular level, frequently used for imaging lipid dynamics in living cells. We report a high‐power picosecond fiber‐based laser and its application for optical parametric oscillator (OPO) pumping and CARS microscopy. This fiber‐based laser has been carefully characterized. It produces 5 ps pulses with 0.8 nm spectral width at a 1,030 nm wavelength with more than 10 W of average power at 80 MHz repetition rate; these spectral and temporal properties can be slightly modified. We then study the influence of these modifications on the spectral and temporal properties of the OPO. We find that the OPO system generates a weakly spectrally chirped signal beam constituted of 3 ps pulses with 0.4 nm spectral width tunable from 790 to 930 nm optimal for CARS imaging. The frequency doubling unconverted part is composed of 7–8 ps pulses with 0.75 nm spectral width compatible with CARS imaging. We also study the influence of the fiber laser properties on the CARS signal generated by distilled water. In agreement with theory, we find that shorter temporal pulses allow higher peak powers and thus higher CARS signal, if the spectral widths are less than 10 cm?1. We demonstrate that this source is suitable for performing CARS imaging of living cells during several hours without photodamages. We finally demonstrate CARS imaging on more complex aquatic organisms called copepods (micro‐crustaceans), on which we distinguish morphological details and lipid reserves. Microsc. Res. Tech. 77:422–430, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
This paper investigates a postprocessing approach to correct spatial distortion in two‐photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field‐of‐view, deep‐tissue studies of vascular structures. Based on simple geometric modelling of the object‐of‐interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to subvolumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three‐dimensional (3D) spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point‐spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field‐of‐view deep‐tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images.  相似文献   

19.
20.
Malignant and dysplastic epithelial lesions have often been reported to excite vascular responses by histopathological characterization. Little is reported concerning in vivo real‐time imaging of vascular patterns and flow in health or disease but the development of miniature imaging instrumentation has now allowed such developments. We describe the application of a selective wavelength (540 nm) epi‐illumination Hopkins pattern endoscopic imaging system to image vascular tissues and capillary blood flow in vivo. The contrast mechanism in such imaging was characterized, haemoglobin acting as a chromatic transmission filter despite endoscopy being a non‐invasive and therefore principally reflection mode imaging system. In vivo adrenergic vascular responses, capillary flow rate variations over time and variations in normal capillary architecture around the oral cavity were recorded; demonstrating that simple imaging systems can be used for non‐surgical diagnosis and characterization of vascular lesions, tumours and treatment responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号