首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a three‐dimensional simulation of scanning electron microscope (SEM) images and surface charging. First, the field above the sample is calculated using Laplace's equation with the proper boundary conditions; then, the simulation algorithm starts following the electron trajectory outside the sample by using electron ray tracing. When the electron collides with the specimen, the algorithm keeps track of the electron inside the sample by simulating the electron scattering history with a Monte Carlo code. During this phase, secondary and backscattered electrons are emitted to form an image and primary electrons are absorbed; therefore, a charge density is formed in the material. This charge density is used to recalculate the field above and inside the sample by solving the Poisson equation with the proper boundary conditions. Field equation, Monte Carlo scattering simulation, and electron ray tracing are therefore integrated in a self‐consistent fashion to form an algorithm capable of simulating charging and imaging of insulating structures. To maintain generality, this algorithm has been implemented in three dimensions. We shall apply the so‐defined simulation to calculate both the global surface voltage and local microfields induced by the scanning beam. Furthermore, we shall show how charging affects resolution and image formation in general and how its characteristics change when imaging parameters are changed. We shall address magnification, scanning strategy, and applied field. The results, compared with experiments, clearly indicate that charging and the proper boundary conditions must be included in order to simulate images of insulating features. Furthermore, we shall show that a three‐dimensional implementation is mandatory for understanding local field formation.  相似文献   

2.
3.
In addition to improvements in lateral resolution in scanning electron microscopy, recent developments of interest here concern extension of the incident beam energy, E0, over two decades, from ≈ 20 keV to ≈ 0.1–0.5 keV and the possibility of changing the take-off emission, α, of detected secondary electrons. These two degrees of freedom for image acquisition permit a series of images of the same field of view of a specimen to be obtained, each image of the series differing from the others in some aspect. The origins of these differences are explored in detail and they are tentatively interpreted in terms of the change in the secondary electron emission yield δ vs. E0, δ = f(E0), and also of the change in δ vs. α, ∂δ/∂α. Various origins for the chemical contrast and topographic contrast have been identified. Illustrated by correlating a secondary electron image and a backscattered electron image, use of the scatter diagram technique facilitates image comparison. The difference between the lateral resolution and the size of the minimum detectable detail is outlined to avoid possible errors in nanometrology. Some aspects related to charging are also considered and possible causes of contrast reversal are suggested. Finally, the suggested strategy consists of the acquisition of various images of a given specimen by changing one parameter: primary beam energy and take-off angle for conductive specimens; working distance or beam intensity for high-resolution experiments; scanning frequency for insulating specimens.  相似文献   

4.
Line-scan profile is always broadened due to the probe shape of the primary electron (PE) beam in scanning electron microscopy (SEM), which leads to an inaccurate dimension metrology. Currently, the effective electron beam shape (EEBS) is suggested as the broadening function to overcome this issue for theoretical analysis, rather than the widely used Gaussian profile. However, EEBS is almost impossible to be acquired due to it strongly depends on both the sample topography and the electron beam focusing condition, which makes it is impossible to be applied in practical analysis. Taking the case of gate linewidth measurement, an approach is proposed to find a best-fit traditional Gaussian profile, which can optimally replace the EEBS in the case of the same sample structure and experimental condition for construction of a database of the parameter in traditional Gaussian profile. This approach is based on the use of the ideal and broadened line-scan profiles which are both obtained from Monte Carlo (MC) simulation, but respectively by an ideal and a focusing incident electron beam model. The expected value of parameter can be obtained through deconvoluting (here using a maximum-entropy algorithm) the broadened line-scan profile then fitting it to the ideal profile. Experimenters can benefit from this database to obtain true line-scan profiles for accurate gate linewidth measurement. This work should prove useful for samples of other structures and be an extension of the database in the future.  相似文献   

5.
M. E. Taylor  S. A. Wight 《Scanning》1996,18(7):483-489
A device has been developed and used successfully on two models of the environmental scanning electron microscope that allows low-magnification imaging of about 30x, significantly better than the original 200x low-magnification imaging limit. This was achieved by using an additional aperture to limit the pressure at a point where it will not block the electron beam, and a larger aperture plate for the combination final aperture/secondary electron signal collection surface that also does not block the electron beam significantly.  相似文献   

6.
A system is described for the storage of cylindrical (10 × 3.5 mm) stubs for low-temperature scanning electron microscopy. The system facilitates rapid retrieval of mounted specimens, maximizes the capacity of the low-temperature (liquid nitrogen) specimen store, locates each stub exactly in a protected well, and eliminates the possibility of specimen damage from conventional hazards during transport between the storage facility and microscope.  相似文献   

7.
A new SEM technique for imaging uncoated non-conducting specimens at high beam voltages is described which employs a high-pressure environment and an electric field to achieve charge neutralization. During imaging, the specimen surface is kept at a stable low voltage, near earth potential, by directing a flow of positive gas ions at the specimen surface under the action of an electric bias field at a pressure of about 200 Pa. In this way charge neutrality is continuously maintained to obtain micrographs free of charging artefacts. Images are formed by specimen current detection containing both secondary electron and backscattered electron signal information. Micrographs of geological, ceramic, and semiconductor materials obtained with this method are presented. The technique is also useful for the SEM examination of histological sections of biological specimens without any further preparation. A simple theory for the charge neutralization process is described. It is based on the interaction of the primary and emissive signal components with the surrounding gas medium and the resulting neutralizing currents. Further micrographs are presented to illustrate the pressure dependence of the charge neutralization process in two glass specimens which show clearly identifiable charging artefacts in conventional microscopy.  相似文献   

8.
An electron detector containing channel electron multipliers was built and tested in the range of low‐voltage scanning electron microscopy as a detector of topographic contrast. The detector can detect backscattered electrons or the sum of backscattered electrons and secondary electrons, with different amount of secondary electrons. As a backscattered electron detector it collects backscattered electrons emitted in a specific range of take‐off angles and in a large range of azimuth angles enabling to obtain large solid collection angle and high collection efficiency. Two arrangements with different channel electron multipliers were studied theoretically with the use of the Monte Carlo method and one of them was built and tested experimentally. To shorten breaks in operation, a vacuum box preventing channel electron multipliers from an exposure to air during specimen exchanges was built and placed in the microscope chamber. The box is opened during microscope observations and is moved to the side of the scanning electron microscope chamber and closed during air admission and evacuation cycles enabling storing channel electron multipliers under vacuum for the whole time. Experimental tests of the detector included assessment of the type of detected electrons (secondary or backscattered), checking the tilt contrast, imaging the spatial collection efficiency, measuring the noise coefficient and recording images of different specimens.  相似文献   

9.
The purpose of this paper is to find some general rules for the design of robust scintillation electron detectors for a scanning electron microscope (SEM) that possesses an efficient light-guiding (LG) system. The paper offers some general instructions on how to avoid the improper design of highly inefficient LG configurations of the detectors. Attention was paid to the relevant optical properties of the scintillator, light guide, and other components used in the LG part of the scintillation detector. Utilizing the optical properties of the detector components, 3D Monte Carlo (MC) simulations of photon transport efficiency in the simple scintillation detector configurations were performed using the computer application called SCIUNI to assess shapes and dimensions of the LG part of the detector. The results of the simulation of both base-guided signal (BGS) configurations for SE detection and edge-guided signal (EGS) configurations for BSE detection are presented. It is demonstrated that the BGS configuration with a matted disc scintillator exit side connected to the cylindrical light guide without optical cement is almost always a sufficiently efficient system with a mean LG efficiency of about 20%. It is simulated that poorly designed EGS strip configurations have an extremely low mean LG efficiency of only 0.01%, which can significantly reduce detector performance. On the other hand, no simple nonoptimized EGS configuration with a light guide widening to a circular or square profile, with a polished cemented scintillator and with an indispensable hole in it has a mean LG efficiency lower than 6.5%.  相似文献   

10.
Here we demonstrate the effects of electron–ion recombination on imaging signals utilized in low vacuum scanning electron microscopes (SEMs). The presented results show that, under normal operating conditions, recombination of ionized gas molecules with secondary electrons (SEs) suppresses a significant fraction of emitted electrons. If the ion flux (and hence the spatial dependence of the SE–ion recombination rate) is laterally inhomogeneous across the imaged region of a specimen, contrast in SE images can be influenced and in some cases (under conditions of high detector field strength and long ionic mean free path) dominated by variations in the recombination rate. Consequently, SE images of features such as topographic asperities can exhibit edge‐darkening, leading to inversion of some topographic contrast. Recognition of the extent and nature of electron–ion recombination is required for a correct understanding of processes occurring in variable pressure SEMs and, subsequently, for models of image formation.  相似文献   

11.
We calculate a universal shift in work function of 59.4 meV per decade of dopant concentration change that applies to all doped semiconductors and from this use Monte Carlo simulations to simulate the resulting change in secondary electron yield for doped GaAs. We then compare experimental images of doped GaAs layers from scanning electron microscopy and conductive atomic force microscopy. Kelvin probe force microscopy allows to directly measure and map local work function changes, but values measured are often smaller, typically only around half, of what theory predicts for perfectly clean surfaces.  相似文献   

12.
Zhang P  Wang HY  Li YG  Mao SF  Ding ZJ 《Scanning》2012,34(3):145-150
Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.  相似文献   

13.
In a scanning electron microscope, electron-beam irradiation of insulators may induce a strong electric field due to the trapping of charges within the specimen interaction volume. On one hand, this field modifies the trajectories of the beam of electrons subsequently entering the specimen, resulting in reduced penetration depth into the bulk specimen. On the other hand, it leads to the acceleration in the vacuum of the emitted secondary electrons (SE) and also to a strong distortion of their angular distribution. Among others, the consequences concern an anomalous contrast in the SE image. This contrast is due to the so-called pseudo-mirror effect. The aim of this work is first to report the observation of this anomalous contrast, then to give an explanation of this effect, and finally to discuss the factors affecting it. Practical consequences such as contrast interpretations will be highlighted.  相似文献   

14.
A cryo-specimen storage system for low-temperature scanning electron microscopy (LTSEM) specimens is described, which: liberates multi-specimen experiments from sampling restrictions imposed by the rate at which LTSEM specimens can be examined in the SEM; provides security against experiment loss resulting from breakdown of the SEM or cryo-system; enables collection of specimens in the field or in laboratories remote from the SEM laboratory; and facilitates international air transport of LTSEM specimens. The components of the system, which has a capacity of 98 stub-mounted specimens, are readily made in a laboratory workshop. The details of the design may be altered to suit particular specimen types or experimental approaches.  相似文献   

15.
Two specimen holders for use in scanning electron microscopy (SEM) of insect and other specimens glued to triangular cardboard points are described. They have important advantages over standard metal stub mounts. Diverse, precisely orientated, viewing angles are possible using single specimens, which can afterwards be re-pinned for return to the collection.  相似文献   

16.
17.
The processing of yeast cells for scanning electron microscopy by conventional sequential fixation with glutaralde-hyde and osmium tetroxide and subsequent dehydration and critical point-drying caused pronounced deformation and visible shrinkage in all basidiomycetous and ascomy-cetous yeast strains studied. The mean cell diameter decreased to nearly 60 and 70%, respectively. After an additional sequential fixation with 1% tannic acid and 0–5% uranyl acetate the cell shrinkage was significantly reduced, but the most important result was a considerable reduction of wrinkling and deformation of the yeast cells.  相似文献   

18.
Li HM  Ding ZJ 《Scanning》2005,27(5):254-267
A new Monte Carlo technique for the simulation of secondary electron (SE) and backscattered electron (BSE) of scanning electron microscopy (SEM) images for an inhomogeneous specimen with a complex geometric structure has been developed. The simulation is based on structure construction modeling with simple geometric structures, as well as on the ray-tracing technique for correction of electron flight-step-length sampling when an electron trajectory crosses the interface of the inhomogeneous structures. This correction is important for the simulation of nanoscale structures of a size comparable with or even less than the electron scattering mean free paths. The physical model for electron transport in solids combines the use of the Mott cross section for electron elastic scattering and a dielectric function approach for electron inelastic scattering, and the cascade SE production is also included.  相似文献   

19.
Wei Zhang 《Scanning》2013,35(4):261-264
In an ultra‐high vacuum scanning electron microscope, the edged branches of amorphous carbon film (~10 nm thickness) can be continuously extended with an eye‐identifying speed (on the order of ~1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261‐264, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
We demonstrate that energy selective scanning electron microscopy can lead to substantial dopant contrast and resolution improvements (compared to standard SEM) when the energy selection is carried out based on Monte Carlo modelled secondary electron spectra in combination with detector transfer modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号