首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the preparation and characterization of copolymer poly-{styrene-acrylic acid} with monomeric ratio of styrene/acrylic acid of 9:1 using benzoyl peroxide as initiator and furthermore filled with nanosilver (25 ppm and 50 ppm) in water/acetone (1:40 v/v). The nanosilver emulsion was obtained from chemical reduction using NaBH4 as reducing agent and sodium citrate as the stabilizer. The preparation of nanosilver emulsion was monitored by the appearance of a Plasmon Resonant Absorption band in a UV–visible spectrophotometer and the particles sizes were observed through TEM. Microbiological studies were performed to investigate the antimicrobial activity of this new material against the microorganisms Escherichia coli (ATCC-25922) and Staphylococcus aureus (ATCC-6538), used as reference strains. The antimicrobial activity of the poly-{styrene-acrylic acid} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not found with the poly(styrene-acrylic acid) alone. The present work suggests that silver ions are released from the polymeric matrix to the culture media and have the ability to tune the Ag+ ions released by controlling the amount of Ag nanoparticles embedded in the composite.  相似文献   

2.
Phenolic-resin fibre was co-graftpolymerized with methyl methacrylate and methacrylic acid. The weight of the fibre increased by 26% after grafting. The grafted fibre was soaked in silvernitrate solution to introduce silver ion on methacrylic acid in the graft by an ion-exchange reaction, followed by carbonization at 900 °C for 30 min under a nitrogen stream and activation at 900 °C under a steam stream. After activation for 40 min, the resulting fibre showed a silver content of 8.3 wt% a specific surface area of 1300 m2g–1 and antimicrobial activity against Staphylococcus aureus and Escherichia coli. The average crystallite size of the silver in this fibre was 30 nm, which suggests co-graftpolymerization is a useful technique to disperse fine silver particles in the activated carbon fibre. After soaking in flowing tap water for 10 and 20 days, this activated carbon fibre lost about 50 wt% of silver but kept its antibacterial activity.  相似文献   

3.
Antibiotic resistance of microorganisms is one of the major problems faced in the field of wound care and management resulting in complications like infection and delayed wound healing. Currently a lot of research is focused on developing newer antimicrobials to treat wounds infected with antibiotic resistant microorganisms. Silver has been used as an antimicrobial agent for a long time in the form of metallic silver and silver sulfadiazine ointments. Recently silver nanoparticles have come up as a potent antimicrobial agent and are finding diverse medical applications ranging from silver based dressings to silver coated medical devices. Chitin is a natural biopolymer with properties like biocompatibility and biodegradability. It is widely used as a scaffold for tissue engineering applications. In this work, we developed and characterized novel chitin/nanosilver composite scaffolds for wound healing applications. The antibacterial, blood clotting and cytotoxicity of the prepared composite scaffolds were also studied. These chitin/nanosilver composite scaffolds were found to be bactericidal against S. aureus and E. coli and good blood clotting ability. These results suggested that these chitin/nanosilver composite scaffolds could be used for wound healing applications.  相似文献   

4.
In this study, we comparison of the antimicrobial activity on the nanosilver shapes; Ag-nanoplates (Ag-NPls), Ag-nanorods (Ag-NRds) and Ag-nanoparticles (Ag-NPs). Nanosilver shapes were prepared with a stabilizer, such as poly (N-vinyl-2-pyrrolidone) (PVP). Antimicrobial effect of nanosilver shapes for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was investigated using disc diffusion and minimum inhibitory concentration (MIC) methods. The growth of Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were inhibited by nanosilver shapes. With BET technique, it was found that surface area of nanosilver shapes are key factor for controlling antimicrobial activity inside of the S. aureus and E. coli bacteria. Anti-bacterial activity of nanosilver shapes was found to be dependent on the shape and size of silver particles. Also, the Ag-NPls did show the best surface area and antimicrobial activity for the test organisms. The scanning electron microscopy (SEM), indicated that, the most strains of S. aureus and E. coli were damaged and extensively disappeared by addition of Ag-NPls.  相似文献   

5.
Poly(vinyl chloride) (PVC) composites containing increasing amounts (2–20%, w/w) of silver zeolite (SZ) were prepared by melt mixing and characterized by thermal, mechanical and rheological analyses. The addition of large amount of SZ did not influence the processability and the formability of the composites, if compared to neat plasticized PVC. The antibacterial activity of PVC SZ composites was tested on Escherichia coli and Staphylococcus epidermidis and resulted promising both in culture broth and on agar plate and also in sterile urine seeded with these strains, for simulation purposes. In sterile urine, composites induced a significant reduction (4–6 log units) of viability of both strains already at 24 h, inhibiting E. coli growth up to 20 days, whereas their antimicrobial action against S. epidermidis vanished within 5 days. The silver release in sterile urine was determined up to 20 days. It was found that the highest amount of silver ions was released during the first day (0.365 ppm), whilst from days 6 to 20 the silver release decreased, reaching a steady daily mean value of 0.02 ppm.  相似文献   

6.
Silver nanocomposite films are found to be very effective material for anti-bacterial application. In the present work, sodium carboxylmethyl cellulose silver nanocomposite films (SCMC SNCF) were tried for antibacterial applications. To enhance their applicability novel film-silver nanoparticle-curcumin composites have been developed. SCMC SNCF are developed from sodium carboxylmethyl cellulose (SCMC), N,N 1 -methylenebisacrylamide (MBA) and silver nitrate solution. These films were characterized by FTIR, UV–visible, XRD, TGA, DSC and TEM techniques. The formed silver nanoparticles have an average particle size of ~15 nm as observed by transmission electron microscopy (TEM). Curcumin loading into SCMC SNCF is achieved by diffusion mechanism. The UV–Visible analysis indicated that higher encapsulation of curcumin in the films with higher SCMC content. Further, it was observed that the presence of silver nanoparticles in the films enhanced the encapsulation of curcumin indicating an interaction between them. Moreover, the antibacterial activity showed that the SCMC films generated with silver nanoparticles have a synergistic effect in the antimicrobial activity against Escherichia coli (E. coli). In order improve the healing efficacy as antibacterial agents, curcumin loaded with SCMC SNCFs were developed which showed significant inhibition of E. coli growth than the silver nanoparticles and curcumin alone film. Therefore, the present study clearly provides novel antimicrobial films which are potentially useful in preventing/treating infections.  相似文献   

7.
Ethylene copolymer film was coated with chitosan by attachment of the polymer to the corona‐treated surface of the film, and the composite film was analysed for antimicrobial activity. The film was active against bacteria in 0.625 mM phosphate buffer; it reduced colony counts of Escherichia coli 25922 and of Listeria monocytogenes Scott A by 5 and 2–3 log10, respectively after 24 h exposure. The activity of the chitosan‐coated film against bacteria in buffer was increased when silver ions were incorporated into the films as demonstrated by complete killing of Escherichia coli O157:H7 DD3795 and the chicken exudate isolate Stenotrophomonas maltophilia within 2 h in buffer. The film was active against L. monocytogenes Scott A in 0.5% buffered peptone water up to a pH of about 7.0. Tests on beef and chicken meat exudates revealed antimicrobial activity of the film against Escherichia coli O157:H7 and L. monocytogenes Scott A of about 2 and 1–2 log10 reductions in colony‐forming units, respectively. The antimicrobial activity of the film against L. monocytogenes Scott A was also tested on turkey breast, and a log10 reduction of about 1.7 log10 units after 10 days and 1.2 log10 after 15 days at 4°C was achieved. Exposure to chitosan‐coated film and 350 MPa of pressure, 55°C or 1% sodium diacetate resulted in a synergistic effect. Copyright © 2008 John Wiley & Sons, Ltd  相似文献   

8.
Nanocomposite films based on cellulose acetate butyrate, modified montmorillonite (Cloisite® 30B), plasticizer (triethyl citrate) and antimicrobial compounds (carvacrol and cinnamaldehyde) were prepared by extrusion. The effects of the Cloisite® 30B content and antimicrobial compound types on the morphology of the nanocomposite films were investigated by X‐ray diffraction and transmission electron microscopy. The thermal characteristics of films were analysed by thermogravimetry and differential scanning calorimetry; oxygen and water vapour permeability and tensile strength were determined. The film's antimicrobial behaviour against Listeria innocua, Staphylococcus aureus, Escherichia coli O157:O7 and Saccharomyces cerevisiae was investigated and determined using a viable cell count method. Nanocomposites with a Cloisite® 30B content of 3 wt% showed better dispersion than nanocomposites with a 5 wt% content. For films with antimicrobial compounds, tensile strength and Young's modulus decreased and water vapour permeability increased (150%) because of the plasticization effect of the antimicrobial compounds (essential oils). The nanocomposites with carvacrol and cinnamaldehyde were effective against the tested Gram‐positive bacteria (reduction of at least 3.0 log CFU/ml) and yeast (reduction of at least 4.0 log CFU/ml). This study demonstrates that antimicrobial cinnamaldehyde and carvacrol can be successfully incorporated into cellulose acetate butyrate nanocomposites and that they have an inhibitory effect against microbial growth in solid medium. It shows the potential use of cellulose acetate butyrate for food packaging applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(vinyl pyrrolidone) (PVP) and nanosilver are promising candidates for biomedical applications because of their biocompatibility and antibacterial efficacy, respectively. In this research, three kinds of nanosilver particles (NSPs) were prepared using the seed mediate growth method and added to electrospinning solutions. PVP/NSPs composites were prepared by electrospinning of 10 wt% PVP solutions that contained NSPs in ethanol. The electrospinability of PVP/NSPs nanowebs in ethanol was investigated according to three different concentrations of NSPs. The Electrospun PVP/NSPs nanocomposites were photocross-linked to improve their water stability. The antibacterial efficacy of the PVP/NSPs nanocomposites was assessed against three types of bacteria; Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. The photocross-linked PVP/NSPs nanocomposites had high water stability and significant antibacterial efficacy against all three types of bacteria. Therefore, these composites could be applied as antimicrobial materials.  相似文献   

10.
One of the most difficult challenges in the biomedical field is bacterial infection, which causes tremendous harm to human health. In this work, an injectable hydrogel is synthesized through rapid assembly of dopamine (DA) and folic acid (FA) cross‐linked by transition metal ions (TMIs, i.e., Zn2+), which was named as DFT‐hydrogel. Both the two carboxyl groups in the FA molecule and catechol in polydopamine (PDA) easily chelates Zn2+ to form metal–ligand coordination, thereby allowing this injectable hydrogel to match the shapes of wounds. In addition, PDA in the hydrogel coated around carbon quantum dot‐decorated ZnO (C/ZnO) nanoparticles (NPs) to rapidly generate reactive oxygen species (ROS) and heat under illumination with 660 and 808 nm light, endows this hybrid hydrogel with great antibacterial efficacy against Staphylococcus aureus (S. aureus, typical Gram‐positive bacteria) and Escherichia coli (E. coli, typical Gram‐negative bacteria). The antibacterial efficacy of the prepared DFT‐C/ZnO‐hydrogel against S. aureus and E. coli under dual‐light irradiation is 99.9%. Importantly, the hydrogels release zinc ions over 12 days, resulting in a sustained antimicrobial effect and promoted fibroblast growth. Thus, this hybrid hydrogel exhibits great potential for the reconstruction of bacteria‐infected tissues, especially exposed wounds.  相似文献   

11.
The aim of the present work was to estimate the bactericidal activity and efficacy of silver pre-treated clinoptilolite-rich tuff from Marsid (Romania) in solid media (agar plates) against Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923. Two samples of natural clinoptilolite-rich tuff was first pre-treated with oxalic acid and sodium hydroxide solutions, respectively. The sample treated with oxalic acid was then exchanged with sodium chloride solution to obtain sodium form. Finally, both samples were exchanged with silver nitrate solution at room temperature for 24 h to obtain silver forms (P1-Ag+ and P2-Ag+) of clinoptilolite. The structure, morphology, and elemental composition of the pre-treated clinoptilolite samples were characterized by XRD, infrared (ATR-IR), SEM, and EDX analysis. The antibacterial activity was investigated by exposing E. coli and S. aureus in nutritive agar to the silver-clinoptilolite samples. Microorganisms were completely inhibited at 2 mg Ag+-clinoptilolite/mL nutritiv medium after 24 h of incubation at 37 °C. The silver-clinoptilolite sample derived from natural clinoptilolite pre-treated with oxalic acid (P1-Ag+) exhibit a stronger antibacterial effect in the presence of E. coli and the sample derived from natural clinoptilolite pre-treated with sodium hydroxide (P2-Ag+) in the presence of S. aureus.  相似文献   

12.
Abstract

A carbon monolith with a silver coating was prepared and its antimicrobial behaviour in a flow system was examined. The functional groups on the surface of the carbon monolith were determined by temperature-programmed desorption and Boehm's method, and the point of zero charge was determined by mass titration. The specific surface area was examined by N2 adsorption using the Brunauer, Emmett and Teller (BET) method. As a test for the surface activity, the deposition of silver from an aqueous solution of a silver salt was used. The morphology and structure of the silver coatings were characterized by scanning electron microscopy and x-ray diffraction. The resistance to the attrition of the silver deposited on the carbon monolith was tested. The antimicrobial activity of the carbon monolith with a silver coating was determined using standard microbiological methods. Carbon monolith samples with a silver coating showed good antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans, and are therefore suitable for water purification, particularly as personal disposable water filters with a limited capacity.  相似文献   

13.
Two antimicrobial agents of organic salicylic acid (SA) and inorganic nanosized titanium dioxide (TiO2) were added into polylactic acid (PLA) respectively to prepare two different biodegradable packaging films. The antimicrobial properties of PLA-based films were then characterized and the film preservation effect on fresh vegetables had been exampled by evaluating the external appearance, headspace gas concentration, weight loss rate, decay rate and −a/b values of Chinese rape. The results showed that the antimicrobial rate of PLA/4%TiO2 film was 91.3% against Staphylococcus aureus and 90.8% against Escherichia coli. In the case of PLA/6%SA film, its antimicrobial rate was 97.3% against S. aureus and 93.1% against E. coli. These two antimicrobial films were seen to obviously reduce the respiration rate of Chinese rape and exhibit lower decay rate and higher −a/b values of Chinese rape than those packaged in pure PLA bag, resulting in the extended shelf life for stored Chinese rape. These satisfactory performances suggest that the PLA-based antimicrobial films could be potentially suitable for the preservation of green vegetables.  相似文献   

14.
Active packaging is an alternative to preserve perishable food. In this work, polyethylene antimicrobial active films containing different levels of triclosan (0, 2000 and 4000 mg kg?1) were developed by extrusion. The films' efficacies were evaluated against Escherichia coli, Staphylococcus aureus, Listeria innocua, Salmonella choleraesuis and Pseudomonas aeruginosa growth using agar diffusion test and by monitoring the inhibition of E. coli and S. aureus inoculated on sliced cooked ham. The mechanical characteristics of the films were also evaluated with Universal Test Machine (Instron). The incorporation of triclosan did not affect the mechanical properties of antimicrobial films compared to the control film. The average film thickness was 82.0 µm and the tensile strength and elongation to break were 30.3 N and 46.2%, respectively. Films containing triclosan showed an antimicrobial effect in vitro against E. coli and S. aureus, with formation of an inhibition halo for both. However, this result was not observed for L. innocua, S. choleraesuis and P. aeruginosa, although, a decrease in colony density occurred around the film for both incubation temperatures (7 ± 2°C and 35 ± 2°C). Sliced ham packed with the antimicrobial films showed a reduction of 1.5 logarithmic cycles in comparison to ham in contact with a control film after 12 days of storage at 7 ± 2°C, for E. coli and S. aureus. Antimicrobial films present potential for application as active packaging materials, as they showed effective against some pathogenic microorganisms that can be transmitted by foods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20–60 nm and a length of 260–550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm?1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10?2 to 10.5×10?2 min?1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.  相似文献   

16.
The onset of infections associated to bacterial proliferation and biofilm formation on indwelling medical devices represents the major risk of morbidity and mortality among patients. In order to contain the risk of infections in clinical practice, there is a growing interest nowadays in silver-based products due to the strong antimicrobial efficacy of silver against a broad spectrum of microorganisms. In this work, temporary catheters for haemodialysis were coated with silver nano-particles through the in situ photo-reduction of a silver salt in alcoholic solution. A homogeneous distribution of silver particles firmly bonded to the substrate was obtained through the adopted technique. An optimisation study was required to define the amount of silver, in order to obtain good efficacy against Gram-positive and Gram-negative bacteria and no cytotoxic effect. At this purpose, three concentrations of silver, 0.1, 0.25 and 0.5 wt%, have been deposited and tested with respect to bacterial reduction percentage and cellular response. Particularly, bacterial enumeration on Escherichia coli and Staphylococcus aureus, and BrdU incorporation, TUNEL assay and Actin staining on a selected primary cell population were performed on catheters treated with the different silver solutions. The silver percentages tested demonstrated strong antibacterial properties together with a good cellular response, thus indicating that the developed product could be proposed in clinical practice and that the lower percentage tested can be preferred with evident advantages in terms of costs.  相似文献   

17.
Although total joint replacement surgery has become common in recent years, problems due to bacterial infection remain a significant complication following this procedure. One approach in our study was to obtain a self-cured bone cement based on hydroxyapatite with nanosilver (Hap-Ag) and ZrO2 and polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane/triethyleneglycol dimethacrylate. New materials were tested for: in vitro silver release, compressive strength (CS), compressive modulus (CM), and radiopacity. In vitro silver release increased in time and depended of silver content in cement. The highest silver release was registered for the cement with 1.26 wt% silver content. The results reveal that the CS for bone cement was between 133.37 and 146.70 MPa and CM was between 1.68 and 1.82 GPa (p > 0.05). A slow increasing of CM was registered for samples with 1.5/1 powder/liquid ratio. Addition of nanosilver and ZrO2 increased radiopacity of experimental bone cement.  相似文献   

18.
We report for the first time the green synthesis of silver nanoparticles using West Indian cherry (Malpighia emarginata) extract known for its high vitamin C content. UV–visible spectroscopy, powder X ray diffraction (PXRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy dispersive X ray spectroscopy (EDX) analysis were used to characterise silver nanoparticles. Silver nanoparticles thus synthesised exhibit antimicrobial activity against gram-negative bacteria such as Pseudomonas aeruginosa, Escherichia coli, and gram-positive bacteria such as Bacillus subtilis and Staphylococcus aureus. The antimicrobial property of nanoparticles thus synthesised was applied in the production of silver-activated charcoal nanocomposite towards fabrication of antimicrobial water filtration columns. The microbial filtration efficiency of the nanocomposite was found to be higher compared to virgin activated charcoal even with reusage.  相似文献   

19.
In the present study, we report enhanced antimicrobial properties of 29 and 23 nm silver nanoparticles (Ag NPs) obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. Antibacterial activity assessed by disk diffusion method indicates that silver nanoparticles produced inhibition zones for both Escherichia coli and Staphylococcus aureus depending on silver concentration. The bacterial growth curve performed in the presence of silver nanoparticles showed a stronger antibacterial effect at lower concentrations than those described in the earlier reports. The effect was both dose and size dependent and was more pronounced against Gram negative bacteria than Gram positive one. The smallest Ag NPs used had a bactericidal effect resulting in killing E. coli cells. Scanning electron microscopy analysis indicated major damage and morphology changes of the silver nanoparticles treated bacterial cells. The major mechanism responsible for the antibacterial effect probably consists in clusters formation and nanoparticles anchorage to the bacterial cell surface.  相似文献   

20.
Antibacterial coatings on catheters for acute dialysis were obtained by an innovative and patented silver deposition technique based on the photo-reduction of the silver solution on the surface of catheter, with consequent formation of antibacterial silver nanoparticles. Aim of this work is the structural and morphological characterization of these medical devices in order to analyze the distribution and the size of clusters on the polymeric surface, and to verify the antibacterial capability of the devices treated by this technique against bacterial proliferation. The structure and morphology of the silver nanoparticles were investigated by using scanning and transmission electron microscopy. The antimicrobial capability of the catheters after silver deposition was confirmed by antibacterial tests with Escherichia coli. Both scanning electron microscopy analysis and antibacterial tests were performed also after washing catheters for 30 days in deionized water at 37°C, relating these data to thermogravimetric analysis and to energy dispersive spectroscopy, in order to check the resistance of coating and its antimicrobial capability after the maximum time of life of these devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号