首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coherent optical links enable high-density constellations and, consequently, a higher throughput. However, the phase noise associated with the transmitter and the receiver lasers is a challenging issue in coherent lightwave systems. The authors present an approach that relies on using digital signal processing techniques to compensate for the laser phase-noise effects. The proposed approach exploits the digital processing power to address the problems arising from optical imperfections. The authors present an adaptive filtering scheme that reduces the effect of the laser phase noise and, consequently, relaxes the laser linewidth requirement. The proposed approach shows how the signal processing techniques can be exploited to compensate for the optical impairments by utilizing the continuing scale down in size and power in very large scale integration (VLSI) technology.  相似文献   

2.
We investigate the performance of coherent analog optical links employing amplitude modulation (AM), phase modulation (PM), and frequency modulation (FM). The performance of these coherent links is compared to that of AM direct-detection (DD) links. The signal-to-noise ratios, nonlinearities, and-spurious-free dynamic ranges (SFDR's) of the foregoing links are evaluated. We calculate the SFDR for links using DFB and Nd:YAG lasers with typical linewidths of 10 MHz and 5 kHz, respectively. The performance of PM and FM links is dominated by phase noise above a critical value of received optical power. For a linewidth of 10 MHz, and SFDR's of PM and FM links are 30 and 31 dB, respectively, for a received optical power above -27 dBm in a 1 GHz bandwidth. For a linewidth of 5 kHz, the corresponding SFDR's above a received power level of 0 dBm are 51 and 53 dB. The performance of DD and AM links is dominated by RIN above a critical value of received optical power. For a RIN level of -155 dB/Hz, the SFDR's of DD and AM links are 49 and 47 dB, respectively, for a received optical power of 10 dBm in a 1 GHz bandwidth. The SFDR's of the DD and coherent links used for transmission of subcarrier-multiplexed (SCM) signals are also derived. We evaluate target laser parameters needed by a number of different applications. For AM video and antenna remoting applications, linewidths of <1 and <3 kHz are required to use PM and FM links, respectively. For FM video, linewidths of <150 and <350 MHz are required to use PM and FM links. For SCM digital applications, linewidths of <80 and <200 MHz are required to use PM and FM links. The paper concludes with a discussion of system implementation issues, including linearization, optical frequency modulation, balanced receivers, and IF issues  相似文献   

3.
We constructed an experimental linewidth-insensitive coherent analog optical link. The transmitter utilizes an external electro-optic amplitude modulator and a semiconductor laser. The receiver consists of a heterodyne front-end, a wideband filter, square law detector and narrowband lowpass filter. We performed experimental measurements and theoretical analyses of the spurious-free dynamic range (SFDR), link gain and noise figure for both the coherent AM and the direct detection links; we investigated the dependencies of the foregoing parameters on the received optical signal power, laser linewidth, IF bandwidth, and the laser relative intensity noise (RIN). By selecting a wide enough bandpass filter, we made the coherent AM link insensitive to laser linewidth. The coherent AM link exhibits a higher SFDR than the corresponding direct detection link when the received optical signal power is less than 85 μW. The noise figure for the coherent link is greater than that for the direct detection link under all conditions investigated. For received optical signal powers greater than 4 μW, the link gain for the direct detection link is greater than that for the coherent AM link. The following are the link parameters that have been achieved for the coherent AM link investigated: SFDR=88 dB·Hz2/3, link gain=-25 dB and noise figure=78 dB; this performance has been obtained with a received optical signal power of 85 μW, and a local oscillator power at the photodetector of 228 μW. The link performance can be further improved by auxiliary subsystems such as a balanced receiver and impedance matched transmitter and receiver ends; and/or by using better optical and electrical devices like higher power lasers, linearized optical modulators, low-noise and high gain RF amplifiers, and optical amplifiers,  相似文献   

4.
The RF transfer function of analog optical links employing optical phase conjugation (OPC) for the compensation of the carrier suppression effect is investigated theoretically. It is well known that the ultimate performance of the OPC technique depends on several system parameters such as fiber span lengths, dispersion characteristics, input optical powers, or optical transmitter chirp. The influence of these parameters on the RF system response is studied by means of simulation, showing that the main degradation of the equalized response is due to the joint action of nonlinear effects and asymmetric optical power change along the fiber spans  相似文献   

5.
Analog optical communication links operating at microwave frequencies are useful for applications like antenna remoting, transceivers, optical signal distribution (CATV), etc. In recent years great progress has been achieved on AM optical links, however, very little has been published on the use of coherent optical links for analog applications. In this paper, we present the analysis, calculated performance, and design guidelines for a coherent phase modulated analog optical link. The performance of this link is compared to that of AM links, and a substantially improved performance is predicted  相似文献   

6.
Laser mode partition noise is an important source of noise in optical transmission systems operating with multimode lasers and dispersive fibres, e.g. single-mode fibres with non-zero material dispersion. The letter describes investigations which confirm the importance of considering laser mode partition noise when practical optical systems are projected. It also gives theoretical estimations and measurement results which are in good agreement, and demonstrates the influence of laser mode partition noise on the transmission quality of an analogue optical system.  相似文献   

7.
The statistical characterization of the phase noise introduced by a semiconductor laser in a coherent optical transmission system is a key problem in the system performance evaluation. The authors consider the moment characterization, of the complex random process. Starting from the implicit representation of the probability density function through the Fokker-Planck equation, the authors obtain closed form analytical expressions for the moments of the filtered phase noise both in stationary and nonstationary conditions. Then the use of the moments for the computation of probability densities through orthogonal polynomial series expansion and maximum entropy approach is considered in application examples  相似文献   

8.
Two important aspects of optical amplifier noise figure as measured with a heterodyne detection receiver are investigated. First, differential mode gain will result in polarization-dependent degradation of the perceived amplifier noise figure, even when the noise figures for the TE and TM modes of the amplifier are the same. For a differential mode gain of 7.5 dB the noise figure degradation can be as large as 3 dB, and experimental data is reported in good agreement with theoretical predictions. Secondly, the first experimental demonstration of the use of image-rejection techniques to improve the sensitivity of a heterodyne receiver limited by beat noise between the local oscillator and amplified spontaneous emission is discussed  相似文献   

9.
In the present state of the art, coherent optical receivers most often operate in the heterodyne mode. Here a photodiode-amplifier combination having bandwidth greater than twice the bit rate (B) is needed: indeed bandwidths considerably greater than2Bare preferably employed to ease design of the bandpass filter needed for noise limitation, and to avoid demodulator penalties in some modulation schemes. For the high bit rate systems now coming into service (560 Mbit/s-2.4 Gbit/s), the optical receiver design requirements become more stringent for coherent heterodyne operation. The various modes of "zero IF" operation, however, require only baseband receiver module bandwidth. The options available are either homodyne (phase locked) operation, or phase diversity (multiport) techniques. In this paper, we compare these options, and show that phase diversity techniques are capable of good performance for high bit rate coherent receivers. In phase diversity operation, not only is phase locking avoided, but also the necessary frequency locking does not have high stability requirements. Furthermore, there are advantages in operating with a small frequency offset from zero (of the order of 1 percent of the bit rate). An experimental receiver has been operated at 320 and 680 Mbit/s, demodulating both amplitude shift keying (ASK) and differential phase shift keying (DPSK). Operation with FSK is also possible. Sensitivities so far achieved of -47.5 dBm (320-Mbit/s ASK) and -42 dBm (680- Mbit/s ASK) with limited local oscillator power are capable of substantial improvement when higher power local oscillators and lower noise receive modules become available. Demodulation of DPSK at 320 Mbit/s has also been achieved and shows a measured receiver sensitivity improvement of over 4 dB over ASK at the same bit rate and local oscillator power. These practical results show clearly that phase diversity is a very realistic option for high bit rate systems.  相似文献   

10.
Schonfelder  A. 《Electronics letters》1991,27(19):1725-1727
For modelling filtered phase noise more efficiently, the number of numerical samples can be reduced by the method of Foschini et al., making use of the Radon-Nikodym theorem. In contrast to this abstract formalism, the author reviews the underlying principles using only very basic techniques of probability theory. As a consequence, a transparent, more intuitive understanding is developed, which allows a simple error estimation. The deduced formulas depend only on the modelling of phase noise as Brownian motion, but not on the details of the filtering process.<>  相似文献   

11.
High-speed, short-distance data transmission over all-plastic step-index fiber (plastic optical fiber, or POF) is normally considered to be limited by intermodal dispersion. Theoretical calculations in this letter show that the baseband frequency response can be significantly improved using simple linear equalization. However, as the fiber length is increased, the sharp absorption attenuation peaks of PMMA fiber can potentially introduce mode partition noise. The bounds on practical laser characteristics and fiber lengths are explored; these results indicate that 530-Mb/s transmission over 100 m of 1-mm-diameter POF is feasible, thus potentially satisfying a significant segment of future computer interconnect applications  相似文献   

12.
In this paper, we study a coherent optical MIMO (COMIEMO) multi-mode fiber link proposed for enhancing the fiber information capacity. We examine the statistical characterization of the equivalent MIMO channel and the improvement in the fiber capacity due to MIMO transmission. It is shown that the equivalent channel behaves similarly to a complex Gaussian MIMO channel, suggesting that the available results on wireless MIMO communication systems can be applied to optical fiber links for capacity enhancement.  相似文献   

13.
A detailed theoretical analysis of optical amplifier noise in coherent optical communication systems with heterodyne receivers is presented. The analysis quantifies in particular how optical image rejection receiver configurations reduce the influence of optical amplifier noise on system performance. Two types of optical image rejection receivers are investigated: a novel, all-optical configuration and the conventional, microwave-based configuration. The analysis shows that local oscillator-spontaneous emission beat noise (LO-SP), signal-spontaneous emission beat noise (S-SP), and spontaneous-spontaneous beat noise (SP-SP) can all be reduced by 3 dB, thereby doubling the dynamic range of the optical amplifier. A 2.5-dB improvement in dynamic range has been demonstrated experimentally with the all-optical image rejection configuration. The implications of the increased dynamic range thus obtained are also discussed from a systems point of view  相似文献   

14.
The performance and application of an optical heterodyne receiver which uses a carrier recovery demodulator are described. Phase sensitive demodulators used in coherent optical transmission are compared, and the suppression of both phase noise and frequency instability of light sources by a carrier recovery (CR-) demodulator is described. A carrier recovered PSK (CR-PSK) demodulator and a phase noise canceling circuit (PNC) for a coherent SCM receiver are introduced as examples of CR-demodulators. The relationship between laser diode spectral linewidths and the delay time difference between the two paths in the CR-PSK demodulator necessary to keep the system performance within a certain power penalty is then derived. In a preliminary experiment using 560-Mb/s CR-PSK transmission, a receiver sensitivity of -51.6 dBm was obtained, and a laser phase noise suppression of about 1/2 that of DPSK was confirmed. The results suggest the possibility of constructing a heterodyne receiver which has no AFC-loop. Applications of a CR-demodulator to an optical frequency division multiplexing (OFDM) system and to a multivalue modulation scheme are discussed  相似文献   

15.
Low-loss InAsP-GaInP multiquantum-well electroabsorption waveguide modulators have been developed for transmitting microwaves as subcarriers over optical fibers. The fiber-to-fiber insertion loss is only 5 dB at 1.32-μm wavelength. The electrooptic slope efficiency of an 185-μm-long 11-GHz bandwidth device is equivalent to a Mach-Zehnder modulator with a Vπ of 2.2 V. The linearity performance was characterized for a test link without any form of amplification. A RF-to-RF link efficiency of -25.5 dB, noise figure of 27 dB and suboctave spurious-free dynamic range of 114 dB.Hz4/5 have been achieved with 16 mW input optical carrier power. The measured 3-dB electrical bandwidth exceeds 20 GHz for a 90-μm-long device  相似文献   

16.
Reports the first detailed investigation of the effect of semiconductor laser amplifier noise figure on the sensitivity of a heterodyne receiver. Independent measurement of the amplifier spontaneous noise spectral density confirms that local oscillator-spontaneous emission beat noise accounts for all of the observed penalty.<>  相似文献   

17.
Kikuchi  K. 《Electronics letters》1987,23(17):885-887
When a semiconductor laser operates in a high power state, the l/f-type FM noise is a dominant cause of spectral broadening. The degradation of the bit error rate performance of the heterodyne DPSK optical communication system due to such 1/f noise is calculated. The result shows that the 1/f noise is much less harmful than the white noise originated from spontaneous emission events.  相似文献   

18.
The authors present three different schemes that allow compensation of phase noise and polarisation state change by sending a reference channel that is suitably frequency shifted by using polarization modulation together with Stokes parameters detection or computing and inverting the Jones matrix that describes the fiber polarization state transformation. As a conclusion, some comparisons are made among different approaches in order to show how different systems can be tailored to different requirements both in point-to-point and in multipoint networks  相似文献   

19.
The statistical properties, i.e. power spectral densities and probability density functions, of the noise due to Rayleigh backscattered light and due to interference of backscattered and reflected light are derived from the autocorrelation function of the optical source field. The crosstalk penalties due to Rayleigh backscattering in single- and double-source bidirectional systems are calculated. It is shown that it is possible to realize a bidirectional system with commercially available connectors in which Rayleigh backscattering is the dominant crosstalk contribution. The measured crosstalk penalties and bit-error probabilities in a double-source bidirectional system confirm the theoretical results  相似文献   

20.
An exact probability of error expression is presented for a narrow-deviation binary CPFSK coherent optical receiver utilizing differential detection (CPFSK-DD). The result is given in terms of the Marcum Q-function and takes into account the non-Gaussian noise statistics at the decision moment, intersymbol interference, noise correlation, and laser phase noise. Numerical results indicate a local oscillator shot-noise-limited receiver sensitivity of 23.4 photons/b when using a modulation index of 0.67 in combination with an IF filter having a sixth-order Butterworth magnitude response and a normalized 3-dB bandwidth of 1.09. For a given IF filter and IF linewidth, it is found that the modulation index and the IF filter bandwidth should be jointly optimized in order to achieve the best overall receiver sensitivity. When the IF linewidth times the differential delay product is 0.34 %, modulation index and the optimum normalized 3-dB bandwidth are found to be 0.72 and 1.1, respectively. By using Monte Carlo simulation, it is demonstrated that adding laser phase noise at the demodulation stage of the analysis is a valid simplifying assumption for a wide range of practical design parameters  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号