首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 49 毫秒
1.
求解间断边值问题的重心插值单元配点法   总被引:1,自引:0,他引:1  
按照间断边值问题的连续区间划分计算单元,在每一个单元上采用重心Lagrange插值近似未知函数,得到每一个单元上的微分矩阵.利用微分矩阵离散微分算子,得到每一个单元上微分方程的离散代数方程组,组装得到边值问题求解的整体代数方程组.将边界条件和单元间的连续性条件,利用微分矩阵离散为代数方程,采用置换法施加边界条件和单元间的连续性条件,得到修正的代数方程组,求解代数方程组得到节点处的函数值.二阶和三阶间断边值问题的数值算例验证了本文方法的有效性和计算精度.  相似文献   

2.
按照间断边值问题的连续区间划分计算单元,在每一个单元上采用重心Lagrange插值近似未知函数,得到每一个单元上的微分矩阵。利用微分矩阵离散微分算子,得到每一个单元上微分方程的离散代数方程组,组装得到边值问题求解的整体代数方程组。将边界条件和单元间的连续性条件,利用微分矩阵离散为代数方程,采用置换法施加边界条件和单元间的连续性条件,得到修正的代数方程组,求解代数方程组得到节点处的函数值。二阶和三阶间断边值问题的数值算例验证了本文方法的有效性和计算精度。  相似文献   

3.
重心插值配点法求解初值问题   总被引:1,自引:0,他引:1  
将计算区间采用第二类Chebyshev点离散,利用数值稳定性好、计算精度高的重心Lagrange插值近似未知函数,建立未知函数各阶导数在计算节点上的微分矩阵,提出数值求解微分方程初值问题的重心插值配点法。采用重心插值配点法将微分方程及其初始条件离散为线性代数方程。将初始条件离散代数方程直接附加到微分方程离散代数方程组,得到n个变量n+2个方程的代数方程组,采用最小二乘法法求解线性代数方程,得到节点的函数值。进而利用微分矩阵直接计算得到未知函数在节点的一阶导数和二阶导数值。数值算例表明本文方法具有计算公式简单、程序实施方便和计算精度高的优点。  相似文献   

4.
将计算区间采用第二类Chebyshev点离散,利用数值稳定性好、计算精度高的重心Lagrange插值近似未知函数,建立未知函数各阶导数在计算节点上的微分矩阵,提出数值求解微分方程初值问题的重心插值配点法。采用重心插值配点法将微分方程及其初始条件离散为线性代数方程。将初始条件离散代数方程直接附加到微分方程离散代数方程组,得到n个变量n 2个方程的代数方程组,采用最小二乘法法求解线性代数方程,得到节点的函数值。进而利用微分矩阵直接计算得到未知函数在节点的一阶导数和二阶导数值。数值算例表明本文方法具有计算公式简单、程序实施方便和计算精度高的优点。  相似文献   

5.
求解两点边值问题的有理插值Galerkin法   总被引:1,自引:0,他引:1  
将求解区间上部分节点的Lgrange插值,通过加权可以构造出一类重心型有理插值函数.重心型有理插值函数在整个区间上具有无穷次光滑性,且不存在极点.本文利用重心型有理插值函数作为试函数,采用Galerkin法提出了求解线性常微分方程两点边值问题的一种新型数值方法.给出了数值计算公式和数值实施流程.数值算例验证了本文方法的有效性和计算精度.  相似文献   

6.
重心有理插值配点法分析矩形板自由振动   总被引:1,自引:0,他引:1  
重心型有理函数插值在整个求解区间具有无穷次光滑性,且不存在极点,保证了计算的精度.本文在计算区间采用工程上常用的等距节点离散,利用数值稳定性好、计算精度高的重心有理插值配点法求解矩形板的自由振动,并与Chebyshev配点法等方法的计算结果做了对比.算例表明:重心有理插值配点法具有计算公式简单,程序实施方便和计算精度高的优点.  相似文献   

7.
重心插值配点法分析梁屈曲问题   总被引:1,自引:0,他引:1  
重心Lagrange插值具有数值稳定性好、计算精度高的优点.采用重心Lagrange插值多项式建立未知函数的微分矩阵,采用配点法将梁的控制方程表示为代数方程组.通过求解代数方程组系数矩阵的特征值和特征向量,求得梁的临界应力和屈曲模态.数值算例表明,文中所提出的方法具有原理简单,易于程序实现和数值计算精度高的优点.  相似文献   

8.
重心Lagrange插值具有数值稳定性好、计算精度高的优点.本文采用重心Lagrange插值多项式建立未知函数的微分矩阵.采用配点法将梁的控制方程表示为代数方程组.通过求解代数方程组,求得梁的各个离散点的挠度,进而利用微分矩阵求得梁的转角和弯矩.数值算例表明,本文所提出的方法具有原理简单,易于程序实现和数值计算精度高的优点.  相似文献   

9.
重心Lagrange插值具有数值稳定性好、计算精度高的优点。本文采用重心Lagrange插值多项式建立未知函数的微分矩阵。采用配点法将梁的控制方程表示为代数方程组。通过求解代数方程组,求得梁的各个离散点的挠度,进而利用微分矩阵求得梁的转角和弯矩。数值算例表明,本文所提出的方法具有原理简单,易于程序实现和数值计算精度高的优点。  相似文献   

10.
重心Lagrange插值具有数值稳定性好、计算精度高的优点。采用重心Lagrange插值多项式建立未知函数的微分矩阵,采用配点法将梁的控制方程表示为代数方程组。通过求解代数方程组系数矩阵的特征值和特征向量,求得梁的临界应力和屈曲模态。数值算例表明,文中所提出的方法具有原理简单,易于程序实现和数值计算精度高的优点。  相似文献   

11.
将计算区间采用第二类Chebyshev点离散,利用数值稳定性好、计算精度高的重心插值近似未知函数,建立未知函数各阶导数在计算节点上的微分矩阵,提出数值求解微分方程初边值问题的重心插值法.采用重心插值法将微分方程及其初边值条件离散为线性代数方程.利用微分矩阵直接计算得到未知函数在节点上的各阶导数值.数值算例表明本文方法具有计算公式简单、程序实施方便和计算精度高等优点.  相似文献   

12.
将计算区间采用第二类Chebyshev点离散,利用数值稳定性好、计算精度高的重心插值近似未知函数,建立未知函数各阶导数在计算节点上的微分矩阵,提出数值求解微分方程初边值问题的重心插值法。采用重心插值法将微分方程及其初边值条件离散为线性代数方程。利用微分矩阵直接计算得到未知函数在节点上的各阶导数值。数值算例表明本文方法具有计算公式简单、程序实施方便和计算精度高等优点。  相似文献   

13.
重心有理插值精度高,且无极点,采用不同的权得到不同的重心有理插值.本文使用切比雪夫点作为插值节点,选取最优插值权来构造重心有理插值.新方法所得插值具有非常高的精度,通过数值实例表明了新方法的有效性.  相似文献   

14.
基于移动最小二乘近似 ,给出了场变量的近似表达 ;采用完全变换法施加本质边界条件 ,给出求解椭圆型边值问题的无网格伽辽金方法 .计算结果表明该方法不仅易于实施 ,而且具有较高的精度和稳定性 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号