首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two nervous tissue-specific chondroitin sulfate proteoglycans, neurocan and phosphacan (the extracellular domain of protein-tyrosine phosphatase-zeta/beta), are high-affinity ligands of tenascin-C. Using portions of tenascin-C expressed as recombinant proteins in human fibrosarcoma cells, we have demonstrated both by direct radioligand binding assays and inhibition studies that phosphacan binding is retained in all deletion variants except those lacking the fibrinogen-like globe and that phosphacan binds to this single domain with nearly the same affinity (Kd approximately 12 nM) as to native or recombinant tenascin-C. However, maximum binding of neurocan requires both the fibrinogen globe and some of the adjacent fibronectin type III repeats. Binding of phosphacan and neurocan to intact tenascin-C, and of phosphacan to the fibrinogen globe, is significantly increased in the presence of calcium. Chondroitinase treatment of the proteoglycans did not affect their binding to either native tenascin-C or to any of the recombinant proteins, demonstrating that these interactions are mediated by the proteoglycan core proteins rather than through the glycosaminoglycan chains. These results are also consistent with rotary shadowing electron micrographs that show phosphacan as a rod terminated at one end by a globular domain that is frequently seen apposed to the fibrinogen globe in mixtures of phosphacan and tenascin-C. C6 glioma cells adhere to and spread on deletion variants of tenascin-C containing only the epidermal growth factor-like domains or the fibronectin type III repeats and the fibrinogen globe. In both cases cell adhesion was inhibited by similar concentrations of phosphacan, demonstrating that the fibrinogen globe is not necessary for this effect, which is apparently mediated by a direct action of phosphacan on the cells rather than by its interaction with the proteoglycan binding site on tenascin-C.  相似文献   

2.
A major chondroitin sulfate proteoglycan in the brain, 6B4 proteoglycan/phosphacan, corresponds to the extracellular region of a receptor-like protein-tyrosine phosphatase, PTPzeta/RPTPbeta. Here, we purified and characterized 6B4 proteoglycan-binding proteins from rat brain. From the CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid) extract of brain microsomal fractions, 18-, 28-, and 40-kDa proteins were specifically isolated using 6B4 proteoglycan-Sepharose. N-terminal amino acid sequencing identified the 18-kDa protein as pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). Scatchard analysis of 6B4 proteoglycan-pleiotrophin binding revealed low (Kd = 3 nM) and high (Kd = 0.25 nM) affinity binding sites. Chondroitinase ABC digestion of the proteoglycan decreased the binding affinities to a single value (Kd = 13 nM) without changing the number of binding sites. This suggested the presence of two subpopulations of the proteoglycan with different chondroitin sulfate structures. Heparin potently inhibited binding of 6B4 proteoglycan to pleiotrophin (IC50 = 3.5 ng/ml). Heparan sulfate and chondroitin sulfate C inhibited moderately (IC50 = 150 and 400 ng/ml, respectively), but, in contrast, chondroitin sulfate A and keratan sulfate were poor inhibitors (IC50 > 100 microg/ml). Immunofluorescence and immunoblotting analyses indicated that both 6B4 proteoglycan and PTPzeta are located on cortical neurons. Anti-6B4 proteoglycan antibody added to the culture medium suppressed pleiotrophin-induced neurite outgrowth of cortical neurons. These results suggested that interaction between 6B4 proteoglycan and pleiotrophin is required for the action of pleiotrophin, and chondroitin sulfate chains on 6B4 proteoglycan play regulatory roles in its binding.  相似文献   

3.
Mammalian brain contains a high mass protein (HMAP) that is unusually rich in atypical L-isoaspartyl (isoAsp) linkages. HMAP has now been purified from bovine brain by anion exchange, hydroxylapatite, and size exclusion chromatography. It is self-aggregating, acidic, and soluble in 5% trichloroacetic acid. Treatment with chondroitinase ABC eliminates the self-aggregation of HMAP and generates several distinct core proteins with estimated masses of 350-450 (doublet), 180, and 100 kDa, indicating that it is composed mainly of chondroitin sulfate proteoglycans (CSPGs). Most of the isoAsp resides in the 350-450-kDa core protein, which was identified by immunoblotting as phosphacan, a CSPG abundant in adult brain. The regional distribution and developmental profile of HMAP in rat brain support this identification. The 180-kDa core protein contains a tenascin-R-related molecule, consistent with recent observations that phosphacan forms a tight complex with tenascin-R. The average phosphacan molecule in adult brain contains at least seven isoAsp sites. Molecular heterogeneity due to isoAsp may explain some of the complex binding properties phosphacan exhibits with its natural ligands. Formation of isoAsp may be important in the roles that phosphacan and other CSPGs play in development of the nervous system.  相似文献   

4.
Using a radioligand binding assay we have demonstrated that phosphacan, a chondroitin sulfate proteoglycan of nervous tissue that also represents the extracellular domain of a receptor-type protein tyrosine phosphatase, shows saturable, reversible, high-affinity binding (Kd approximately 6 nM) to fibroblast growth factor-2 (FGF-2). Binding was reduced by only approximately 35% following chondroitinase treatment of the proteoglycan, indicating that the interaction is mediated primarily through the core protein rather than the glycosaminoglycan chains. Immunocytochemical studies also showed an overlapping localization of FGF-2 and phosphacan in the developing central nervous system. At concentrations of 10 microg protein/ml, both native phosphacan and the core protein obtained by chondroitinase treatment potentiated the mitogenic effect of FGF-2 (5 ng/ml) on NIH/3T3 cells by 75-90%, which is nearly the same potentiation as that produced by heparin at an equivalent concentration. Although studies on the role of proteoglycans in mediating the binding and mitogenic effects of FGF-2 have previously focused on cell surface heparan sulfate, our results indicate that the core protein of a chondroitin sulfate proteoglycan may also regulate the access of FGF-2 to cell surface signaling receptors in nervous tissue.  相似文献   

5.
The method of affinity coelectrophoresis was used to study the binding of nine representative glycosaminoglycan (GAG)-binding proteins, all thought to play roles in nervous system development, to GAGs and proteoglycans isolated from developing rat brain. Binding to heparin and non-neural heparan and chondroitin sulfates was also measured. All nine proteins-laminin-1, fibronectin, thrombospondin-1, NCAM, L1, protease nexin-1, urokinase plasminogen activator, thrombin, and fibroblast growth factor-2-bound brain heparan sulfate less strongly than heparin, but the degree of difference in affinity varied considerably. Protease nexin-1 bound brain heparan sulfate only 1.8-fold less tightly than heparin (Kdvalues of 35 vs. 20 nM, respectively), whereas NCAM and L1 bound heparin well (Kd approximately 140 nM) but failed to bind detectably to brain heparan sulfate (Kd>3 microM). Four proteins bound brain chondroitin sulfate, with affinities equal to or a few fold stronger than the same proteins displayed toward cartilage chondroitin sulfate. Overall, the highest affinities were observed with intact heparan sulfate proteoglycans: laminin-1's affinities for the proteoglycans cerebroglycan (glypican-2), glypican-1 and syndecan-3 were 300- to 1800-fold stronger than its affinity for brain heparan sulfate. In contrast, the affinities of fibroblast growth factor-2 for cerebroglycan and for brain heparan sulfate were similar. Interestingly, partial proteolysis of cerebroglycan resulted in a >400-fold loss of laminin affinity. These data support the views that (1) GAG-binding proteins can be differentially sensitive to variations in GAG structure, and (2) core proteins can have dramatic, ligand-specific influences on protein-proteoglycan interactions.  相似文献   

6.
Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase zeta (PTPzeta)/receptor-like protein tyrosine phosphatase beta (RPTPbeta) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPzeta isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecules are involved in migratory processes of neurons during brain development. In this study, we examined the roles of pleiotrophin-PTPzeta interaction in the neuronal migration using cell migration assay systems with glass fibers and Boyden chambers. Pleiotrophin and poly-L-lysine coated on the substratums stimulated cell migration of cortical neurons, while laminin, fibronectin, and tenascin exerted almost no effect. Pleiotrophin-induced and poly-L-lysine-induced neuronal migrations showed significant differences in sensitivity to various molecules and reagents. Polyclonal antibodies against the extracellular domain of PTPzeta, PTPzeta-S, an extracellular secreted form of PTPzeta, and sodium vanadate, a protein tyrosine phosphatase inhibitor, added into the culture medium strongly suppressed specifically the pleiotrophin-induced neuronal migration. Furthermore, chondroitin sulfate C but not chondroitin sulfate A inhibited pleiotrophin-induced neuronal migration, in good accordance with our previous findings that chondroitin sulfate constitutes a part of the pleiotrophin-binding site of PTPzeta, and PTPzeta-pleiotrophin binding is inhibited by chondroitin sulfate C but not by chondroitin sulfate A. Immunocytochemical analysis indicated that the transmembrane forms of PTPzeta are expressed on the migrating neurons especially at the lamellipodia along the leading processes. These results suggest that PTPzeta is involved in the neuronal migration as a neuronal receptor of pleiotrophin distributed along radial glial fibers.  相似文献   

7.
Neurocan is a member of the aggrecan family of proteoglycans which are characterized by NH2-terminal domains binding hyaluronan, and COOH-terminal domains containing C-type lectin-like modules. To detect and enhance the affinity for complementary ligands of neurocan, the COOH-terminal neurocan domain was fused with the NH2-terminal region of tenascin-C, which contains the hexamerization domain of this extracellular matrix glycoprotein. The fusion protein was designed to contain the last downstream glycosaminoglycan attachment site and was expressed as a proteoglycan. In ligand overlay blots carried out with brain extracts, it recognized tenascin-C. The interaction was abolished by the addition of EDTA, or TNfn4,5, a bacterially expressed tenascin-C fragment comprising the fourth and fifth fibronectin type III module. The fusion protein directly reacted with this fragment in ligand blot and enzyme-linked immunosorbent assay procedures. Both tenascin-C and TNfn4,5 were retained on Sepharose 4B-linked carboxyl-terminal neurocan domains, which in BIAcore binding studies yielded a KD value of 17 nM for purified tenascin-C. We conclude that a divalent cation-dependent interaction between the COOH-terminal domain of neurocan and those fibronectin type III repeats is substantially involved in the binding of neurocan to tenascin-C.  相似文献   

8.
9.
Chondroitin sulfate-rich proteoglycans secreted by arterial intima smooth muscle cells appear involved in low density lipoprotein entrapment and modification. Hypothetically, such a process may contribute to atherogenesis. We compared composition and size of those proteoglycans synthesized by proliferating and resting human arterial smooth muscle cells for which low density lipoprotein had affinity. Lipoprotein-binding proteoglycans secreted by proliferating cells were larger than those of resting cells (M(r) = 1.1 x 10(6) versus 0.8 x 10(6). This was primarily caused by increased M(r) of the chondroitin sulfate chains (6 x 10(4) versus 3.5 x 10(4)). The glycosaminoglycan chains of the proteoglycans from both cells were made of more than 90% chondroitin 6-sulfate and chondroitin 4-sulfate in a 6:4 ratio. Affinity chromatography indicated that low density lipoprotein had a higher affinity with the proteoglycans synthesized by proliferating cells than those from resting cells. Measured with gel mobility shift assay, the apparent affinity constant of low density lipoproteins for proteoglycans from proliferating cells was 3-fold higher than that for proteoglycans from resting cells. This increased affinity appeared related to the higher relative proportion of proteoglycans with longer glycosaminoglycan chains secreted by the proliferating cells than those secreted by the resting cells.  相似文献   

10.
Aggregation and deposition of the 40-42-residue amyloid beta-protein (Abeta) are early and necessary neuropathological events in Alzheimer's disease. An understanding of the molecular interactions that trigger these events is important for therapeutic strategies aimed at blocking Abeta plaque formation at the earliest stages. Heparan sulfate proteoglycans may play a fundamental role since they are invariably associated with Abeta and other amyloid deposits at all stages. However, the nature of the Abeta-heparan sulfate proteoglycan binding has been difficult to elucidate because of the strong tendency of Abeta to self-aggregate. Affinity co-electrophoresis can measure the binding of proteoglycans or glycosaminoglycans to proteins without altering the physical state of the protein during the assay. We used affinity co-electrophoresis to study the interaction between Abeta and the glycosaminoglycan heparin and found that the aggregation state of Abeta governs its heparin-binding properties: heparin binds to fibrillar but not nonfibrillar Abeta. The amyloid binding dye, Congo red, inhibited the interaction in a specific and dose-dependent manner. The "Dutch" mutant AbetaE22Q peptide formed fibrils more readily than wild type Abeta and it also attained a heparin-binding state more readily, but, once formed, mutant and wild type fibrils bound heparin with similar affinities. The heparin-binding ability of aggregated AbetaE22Q was reversible with incubation in a solvent that promotes alpha-helical conformation, further suggesting that conformation of the peptide is important. Studies with another human amyloidogenic protein, amylin, suggested that its heparin-binding properties were also dependent on aggregation state. These results demonstrate the dependence of the Abeta-heparin interaction on the conformation and aggregation state of Abeta rather than primary sequence alone, and suggest methods of interfering with this association.  相似文献   

11.
The neural cell adhesion molecule (NCAM) is known to participate in both homophilic and heterophilic binding, the latter including mechanisms that involve interaction with proteoglycans. The polysialic acid (PSA) moiety of NCAM can serve as a negative regulator of homophilic binding, but indirect evidence has suggested that PSA can also be involved in heterophilic binding. We have examined this potential positive role for PSA in terms of the adhesion of PSA-expressing mouse F11 cells and chick embryonic brain cells to substrates composed of the purified heparan sulfate proteoglycans agrin and 6C4. This adhesion was specifically inhibited by polyclonal anti-NCAM Fab antibodies, monoclonal anti-PSA antibodies, PSA itself, and enzymatic removal of either PSA or heparan sulfate side chains. By contrast, the adhesion was not affected by chondroitinase, and cell binding to laminin was not inhibited by any of these treatments. A specific NCAM-heparan sulfate interaction in this adhesion was further indicated by its inhibition with monoclonal anti-NCAM Fab antibodies that recognize the known heparin-binding domain of NCAM and with the HBD-2 peptide derived from this region, but not with antibodies directed against other regions of the protein including the homophilic binding region. Together, the results suggest that PSA can act in vitro either as a receptor in NCAM heterophilic adhesion or as a promoter of binding between heparan sulfate proteoglycans and the NCAM heparin-binding domain.  相似文献   

12.
Protein tyrosine phosphatase zeta (PTPzeta/RPTPbeta) is a receptor-like protein tyrosine phosphatase specifically expressed in the brain. Alternative splicing produces three isoforms of this molecule: PTPzeta-A, the full-length form of PTPzeta; PTPzeta-B, the short form of PTPzeta; and PTPzeta-S, an extracellular variant. Here, we identified all these isoforms, including PTPzeta-B, as chondroitin sulfate proteoglycans, and characterized their carbohydrate modification and expression profiles in the rat brain. The level of PTPzeta-A expression was maintained during the prenatal period and decreased rapidly after birth. PTPzeta-S was expressed in a similar manner, although the postnatal decrease was gradual. In contrast, relatively constant amounts of PTPzeta-B were observed from embryonic day 13 (E13) through adulthood. PTPzeta-A and -S were constantly expressed only as proteoglycans during development, but a substantial amount of PTPzeta-B was detected in a non-proteoglycan form at E13-15. Moreover, PTPzeta-B did not contain LeX, HNK-1 carbohydrate, or keratan sulfate, although PTPzeta-A and -S were generally modified with these carbohydrates. L cells transfected with PTPzeta-A and -B cDNAs expressed these proteins as enzymatically active chondroitin sulfate proteoglycans. The PTPzeta-A and -B in L cells showed essentially similar localizations in cell cortical structures on immunofluorescence microscopy, although immature or processed forms of PTPzeta-A were accumulated additively in intracellular patchy structures. These results show that the three isoforms of PTPzeta are differentially regulated during development, and that the extracellular deleted region in PTPzeta-B is important for determination of carbohydrate modification.  相似文献   

13.
NG2 is a membrane-spanning proteoglycan with a primary structure unique among cell surface or extracellular matrix proteins. To characterize the interaction between NG2 and extracellular matrix proteins, we have used a eukaryotic expression system to produce and purify several recombinant fragments covering not only the entire ectodomain of NG2 but also distinct subdomains of the molecule. Using a solid phase binding assay with various extracellular matrix proteins, we have identified two main ligands for NG2, namely, collagens V and VI. Consistent with previous models of glycosaminoglycan attachment, roughly 50% of the recombinant NG2 fragments containing the central domain have chondroitin sulfate chains attached to the protein core. These glycosaminoglycan chains are not directly involved in collagen binding, since chondroitinase-treated fragments exhibit an unimpaired ability to bind to both collagens. Using more restricted recombinant fragments of NG2, we mapped the binding site for both collagens to the central domain of NG2. Electron microscopy after rotary shadowing of native NG2 molecules indicates that this extended nonglobular domain provides a flexible connection joining the two N- and C-terminal globular regions of NG2. Rotary shadowing of mixtures of NG2 and collagen V or VI confirms a direct interaction between the molecules and indicates that the collagens align with the central region of NG2, giving the appearance of a rod between the N- and C-terminal globules.  相似文献   

14.
Phospholipase A2 acting on low density lipoproteins in the extracellular arterial intima may form proinflammatory lipid mediators. Human nonpancreatic secretory phospholipase A2 has three regions that may associate with sulfated glycosaminoglycans. The apoB-100 molecule in low density lipoproteins also has glycosaminoglycan binding regions that could mediate its retention in the arterial intima. Here we report that human nonpancreatic phospholipase A2 isolated from a transfected cell line binds to glycosaminoglycans secreted by cultured human arterial smooth muscle cells. A gel mobility shift assay showed that the affinity of phospholipase A2 for glycosaminoglycans from a heparan sulfate/chondroitin sulfate proteoglycan was higher than for chondroitin sulfate glycosaminoglycans from a larger versican-like proteoglycan. Affinity chromatography confirmed these results. All glycosaminoglycans tested, at concentrations up to 100 microM, increased the activity of phospholipase A2 toward phosphatidylcholine liposomes. Above this concentration, heparan sulfate and heparin inhibited the enzyme. Heparin and chondroitin 6-sulfate increased phospholipase A2 activity on low density lipoproteins up to 4-fold at 100 microM, whereas heparan sulfate had no effect. The results indicate that human nonpancreatic secretory phospholipase A2 interacts with proteoglycans via their glycosaminoglycan moiety and that the enzyme activity may be modulated by the association of the enzyme and its substrate to the sulfated polysaccharides.  相似文献   

15.
Platelet factor 4 (PF4) is an abundant platelet alpha-granule heparin-binding protein. We have previously shown that PF4 accelerates up to 25-fold the proteolytic conversion of protein C to activated protein C by the thrombin.thrombomodulin complex by increasing its affinity for protein C 30-fold. This stimulatory effect requires presence of the gamma-carboxyglutamic acid (Gla) domain in protein C and is enhanced by the presence of a chondroitin sulfate glycosaminoglycan (GAG) domain on thrombomodulin. We hypothesized that cationic PF4 binds to both protein C and thrombomodulin through these anionic domains. Qualitative SDS-polyacrylamide gel electrophoresis analysis of avidin extracts of solutions containing biotinylated PF4 and candidate ligands shows that PF4 binds to GAG+ but not GAG- forms of thrombomodulin and native but not Gla-domainless protein C. Quantitative analysis using the surface plasmon resonance-based BIAcoreTM biosensor system confirms the extremely high affinity of PF4 for heparin (KD = 4 nM) and shows that PF4 binds to GAG+ thrombomodulin with a KD of 31 nM and to protein C with a KD of 0.37 microM. In contrast, PF4 had no measurable interaction with GAG- thrombomodulin or Gla-domainless protein C. Western blot analysis of normal human plasma extracted with biotinylated PF4 demonstrates PF4 binding to protein C in a physiologic context. Thus, PF4 binds with relative specificity and high affinity to the GAG- domain of thrombomodulin and the Gla domain of protein C. These interactions may enhance the affinity of the thrombin.thrombomodulin complex for protein C and thereby promote the generation of activated protein C.  相似文献   

16.
The heparin-binding growth-associated molecule HB-GAM (also named pleiotrophin) and the retinoic acid-induced heparin-binding protein RIHB (chicken midkine) are developmentally regulated proteins forming a new family of heparin-binding molecules with putative functions during cell growth and differentiation. A direct involvement of these molecules during chondrogenesis in vivo was suggested by their patterns of expression. The putative chondrogenic activity of these molecules was investigated in vitro using micromass cultures from chicken limb bud mesenchymal cells. Exogenous HB-GAM, not RIHB, was found to enhance chondrogenesis in this system. These results provide a strong incentive for considering and further investigating the role of this protein in the control of limb cartilage differentiation.  相似文献   

17.
Preincubation of HL60 cells and HUVEC cells with urinary trypsin inhibitor (UTI) inhibited increase of cytosolic free Ca2+ induced by LPS. In contrast, an increase of cytosolic free Ca2+ induced by LPS was not inhibited by deglycosylated UTI, UTI treated with monoclonal antibody of chondroitin sulfate. 45Ca2+ binding showed that UTI binds 45Ca2+ dose-dependently. Scatchard plot analysis showed that UTI has two binding sites for Ca2+, a high affinity binding site (Kd=15 microM) and a low affinity site (Kd=150 microM), and that UTI has more than 70 Ca2+ binding sites per molecule. The Ca2+ binding capacity of deglycosylated UTI and UTI treated with monoclonal antibody of chondroitin sulfate was markedly depressed. Furthermore, UTI forms multi-polymers in the presence of Ca2+ as demonstrated by gel filtration and agarose gel electrophoresis. These results suggest that UTI is a physiological Ca2+ chelator on the cells and that the action is due to chondroitin sulfate chains of UTI.  相似文献   

18.
We have previously demonstrated that annexin IV, one of the calcium/phospholipid-binding annexin family proteins, binds to glycosaminoglycans (GAGs) in a calcium-dependent manner (Kojima, K., Yamamoto, K., Irimura, T., Osawa, T., Ogawa, H., and Matsumoto, I. (1996) J. Biol. Chem. 271, 7679-7685). In this study, we investigated the GAG binding specificities of annexins IV, V, and VI by affinity chromatography and solid phase assays. Annexin IV was found to bind in a calcium-dependent manner to all the GAG columns tested. Annexin V bound to heparin and heparan sulfate columns but not to chondroitin sulfate columns. Annexin VI was adsorbed to heparin and heparan sulfate columns in a calcium-independent manner, and to chondroitin sulfate columns in a calcium-dependent manner. An N-terminal half fragment (A6NH) and a C-terminal half fragment (A6CH) of annexin VI, each containing four units, were prepared by digestion with V8 protease and examined for GAG binding activities. A6NH bound to heparin in the presence of calcium but not to chondroitin sulfate C, whereas A6CH bound to heparin calcium-independently and to chondroitin sulfate C calcium-dependently. The results showed that annexin IV, V, and VI have different GAG binding properties. Some annexins have been reported to be detected not only in the cytoplasm but also on the cell surface or in extracellular components. The findings suggest that the some annexins function as recognition elements for GAGs in extracellular space.  相似文献   

19.
Adherence of parasite-infected erythrocytes (IEs) to the microvascular endothelium of various organs, a process known as sequestration, is a feature of Plasmodium falciparum malaria. This event is mediated by specific adhesive interactions between parasite proteins, expressed on the surface of IEs, and host molecules. P. falciparum IEs can bind to purified chondroitin sulfate A (CS-A), to the proteoglycan thrombomodulin through CS-A side chains, and to CS-A present on the surface of brain and lung endothelial cells and placental syncytiotrophoblasts. In order to identify structural characteristics of CS-A important for binding, oligosaccharide fragments ranging in size from 2 to 20 monosaccharide units were isolated from CS-A and CS-C, following controlled chondroitin lyase digestion, and used as competitive inhibitors of IE binding to immobilized ligands. Inhibition of binding to CS-A was highly dependent on molecular size: a CS-A tetradecasaccharide fraction was the minimum length able to almost completely inhibit binding. The effect was dose dependent and similar to that of the parent polysaccharide, and the same degree of inhibition was not found with the CS-C oligosaccharides. There was no effect on binding of IEs to other ligands, e.g., CD36 and intercellular adhesion molecule 1. Hexadeca- and octadecasaccharide fractions of CS-A were required for maximum inhibition of binding to thrombomodulin. Analyses of oligosaccharide fractions and polysaccharides by electrospray mass spectrometry and high-performance liquid chromatography suggest that the differences between the activities of CS-A and CS-C oligosaccharides can be attributed to differences in sulfate content and sulfation pattern and that iduronic acid is not involved in IE binding.  相似文献   

20.
Proteoglycans interact with soluble proteins such as growth factors and thereby regulate extracellular signals. During B lymphocyte maturation, secretion of proteoglycans may be functionally related to the different requirements of the respective maturation stage. In order to address this question we compared structures of proteoglycans released by three B lymphocyte lines which correspond to different maturation stages. Plasma-cell type U266 cells secreted the largest proteoglycans (150 kDa), followed by mature B cells JOK-1 (130 kDa) and pre-B cells Nalm 6 (90 kDa). On average, secreted proteoglycans carried four glycosaminoglycan chains with molecular masses ranging each from 32 kDa (U266) to 23 kDa (Nalm 6). All three cell lines secreted more than 90% of their proteoglycans possessing chondroitin sulfate chains having chondroitin-4-sulfate (delta Di-4S) as the prevalent disaccharide unit. In these proteochondroitin sulfates, unsulfated chondroitin (delta Di-0S) was present in smaller quantities and chondroitin-6-sulfate (delta Di-6S)-containing proteoglycan was released only by Nalm 6 and U266 cells. Cell line Nalm 6 exclusively produced proteochondroitin sulfate, whereas in culture medium of JOK-1 and U266 a small amount of proteoheparan sulfate was found also. In all three cell lines, treatment with chondroitinase ABC released a protein of 30 kDa and chemical deglycosylation resulted in a core protein of 21 kDa. In addition to pure proteochondroitin sulfate, a small portion of proteoheparan sulfate with a protein moiety of 30 kDa was detected after heparitinase treatment in supernatants of JOK-1 and U266. Thus, our results indicate that released proteoglycans may undergo modulations in their glycosaminoglycan moieties during B-cell differentiation. This may have functional consequences at the level of growth factor regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号