首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormalities in the vestibulo-ocular reflex (VOR) after unilateral vestibular injury may cause symptomatic gaze instability. We compared five subjects who had unilateral vestibular lesions with normal control subjects. Gaze stability and VOR gain were measured in three axes using scleral magnetic search coils, in light and darkness, testing different planes of rotation (yaw and pitch), types of stimulus (sinusoids from 0.8 to 2.4 Hz, and transient accelerations) and methods of rotation (active and passive). Eye velocity during horizontal tests reached saturation during high-velocity/acceleration ipsilesional rotation. Rapid vertical head movements triggered anomalous torsional rotation of the eyes. Gaze instability was present even during active rotation in the light, resulting in oscillopsia. These abnormal VOR responses are a consequence of saturating nonlinearities, which limit the usefulness of frequency-domain analysis of rotational test data in describing these lesions.  相似文献   

2.
The vestibulo-ocular reflex (VOR) generates compensatory eye movements in response to angular and linear acceleration sensed by semicircular canals and otoliths respectively. Gaze stabilization demands that responses to linear acceleration be adjusted for viewing distance. This study in humans determined the transient dynamics of VOR initiation during angular and linear acceleration, modification of the VOR by viewing distance, and the effect of unilateral deafferentation. Combinations of unpredictable transient angular and linear head rotation were created by whole body yaw rotation about eccentric axes: 10 cm anterior to eyes, centered between eyes, centered between otoliths, and 20 cm posterior to eyes. Subjects viewed a target 500, 30, or 15 cm away that was extinguished immediately before rotation. There were four stimulus intensities up to a maximum peak acceleration of 2,800 degrees/s2. The normal initial VOR response began 7-10 ms after onset of head rotation. Response gain (eye velocity/head velocity) for near as compared with distant targets was increased as early as 1-11 ms after onset of eye movement; this initial effect was independent of linear acceleration. An otolith mediated effect modified VOR gain depending on both linear acceleration and target distance beginning 25-90 ms after onset of head rotation. For rotational axes anterior to the otoliths, VOR gain for the nearest target was initially higher but later became less than that for the far target. There was no gain correction for the physical separation between the eyes and otoliths. With lower acceleration, there was a nonlinear reduction in the early gain increase with close targets although later otolith-mediated effects were not affected. In subjects with unilateral vestibular deafferentation, the initial VOR was quantitatively normal for rotation toward the intact side. When rotating toward the deafferented side, VOR gain remained less than half of normal for at least the initial 55 ms when head acceleration was highest and was not modulated by target distance. After this initial high acceleration period, gain increased to a degree depending on target distance and axis eccentricity. This behavior suggests that the commissural VOR pathways are not modulated by target distance. These results suggest that the VOR is initially driven by short latency ipsilateral target distance dependent and bilateral target-distance independent canal pathways. After 25 ms, otolith inputs contribute to the target distance dependent pathway. The otolith input later grows to eventually dominate the target distance mediated effect. When otolith input is unavailable the target distance mediated canal component persists. Modulation of canal mediated responses by target distance is a nonlinear effect, most evident for high head accelerations.  相似文献   

3.
The mesencephalic interstitial nucleus of Cajal (iC) is considered the neural integrator for vertical and torsional eye movements and has also been proposed to be involved in saccade generation. The aim of this study was to elucidate the function of iC in neural integration of different types of eye movements and to distinguish eye movement deficits due to iC impairment from that of the immediately adjacent rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). We addressed the following questions: (1) According to the neural integrator hypothesis, all eye movements including the saccadic system and the vestibulo-ocular reflex (VOR) share a common neural integrator. Do iC lesions impair gaze-holding function for vertical and torsional eye positions and the torsional and vertical VOR gain to a similar degree? (2) What are the dynamic properties of vertical and torsional eye movements deficits after iC lesions, e.g., the specificity of torsional and vertical nystagmus? (3) Is iC involved in saccade generation? We performed 13 uni- and three bilateral iC inactivations by muscimol microinjections in four alert monkeys. Three-dimensional eye movements were studied under head-stationary conditions during vertical and torsional VOR. Under static conditions, unilateral iC injections evoked a shift of Listing's plane to the contralesional side (up to 20 degrees), which increased (ipsilesional ear down) or decreased (ipsilesional ear up) by additional static vestibular stimulation in the roll plane, i.e., ocular counterroll was preserved. The monkeys showed a spontaneous torsional nystagmus with a profound downbeat component. The fast phases of torsional nystagmus always beat toward the lesion side (ipsilesional). Pronounced gaze-holding deficit for torsional and vertical eye positions (neural integrator failure) was reflected by the reduction of time constants of the exponential decay of the slow phase to 330-370 ms. Whereas the vertical oculomotor range was profoundly decreased (up to 50%) and vertical saccades were reduced in amplitude, saccade velocity remained normal and horizontal eye movements were not affected. Bilateral iC injections reduced the shift of Listing's plane caused by unilateral injections, i.e., back toward the plane of zero torsion. Torsional nystagmus reversed its direction and ceased, whereas vertical nystagmus persisted. In contrast to unilateral injection, there was additional upbeating nystagmus. Time constants of the position integrator of the gaze-holding system did not differ between unilateral and bilateral injections. The range of stable vertical eye positions and saccade amplitude was smaller when compared with unilateral injections, but the main sequence remained normal. Dynamic vestibular stimulation after unilateral iC injections had virtually no effect on torsional and vertical VOR gain and phase at the same time when time constants already indicated severe integrator failure. Torsional VOR elicited a constant slow-phase velocity offset up to 30 degrees toward the contralesional side, i.e., in the opposite direction to spontaneous torsional nystagmus. Likewise, vertical VOR showed a velocity offset in an upward direction, i.e., opposite to the spontaneous downbeat nystagmus. Contralesional torsional and upward vertical quick phases were missing or severely reduced in amplitude but showed normal velocity. In contrast, bilateral iC injections reduced the gain of the torsional and vertical VOR by 50% and caused a phase lead of 10-20 degrees (eye compared with head velocity). We propose that the slow-phase velocity offset during torsional and vertical VOR reflects a vestibular imbalance. It therefore appears likely that the vertical and torsional nystagmus after iC lesions is not only caused by a neural integrator failure but also by a vestibular imbalance. Unilateral iC injections have clearly differential effects on the VOR and the gaze-holding function. (ABSTRACT TRUNCATED)  相似文献   

4.
Patients with hemispheric lesions frequently suffer from equilibrium impairment that may be prolonged and may interfere with rehabilitation. In an effort to clarify whether this phenomenon is related to vestibular dysfunction, we examined the relationship of the horizontal vestibulo-ocular reflex (VOR) with stability in 15 patients with unilateral hemispheric stroke. The study included electro-oculographic recording of the VOR while the patients were rotated in a vestibular chair. Stability was scored in accordance with the patients' ability to maintain equilibrium in six graded positions. The findings demonstrated relationship between VOR gain (eye/head displacement) and equilibrium. It is suggested that the "loss of balance" after stroke may be related to an impairment of the corticovestibular modulation of the vestibular function.  相似文献   

5.
1. Fifteen hundred and thirty cells were recorded in the medial vestibular nucleus (MVN) of alert monkeys whose vestibuloocular reflex (VOR) had been adapted to one of two kinds of spectacles. The "high-gain" sample was recorded from monkeys that had worn 2.0 x telescopic spectacles; the gain of the VOR in the dark (eye velocity divided by head velocity) was greater than 1.5. The "low-gain" sample was recorded from monkeys that had worn goggles providing a visual field that was fixed with respect to the freely turning head; the gain of the VOR was less than 0.4. 2. Cells showing modulation of firing rate related to imposed head velocity were grouped into four categories: pure vestibular (10), vestibular-plus-saccade (10), vestibular-plus-position (10), and vestibular-plus-head/body (24). Sensitivity to head velocity was measured from averaged responses to sinusoidal, 0.4-Hz whole-body oscillation in the horizontal plane. Almost all cells (98%) having increased firing during ipsilateral head rotation received inputs from the horizontal semicircular canals. Conversely, 82% of cells having increased firing during contralateral head rotation received inputs from the vertical canals. 3. There were no statistically significant differences in resting discharge rate, phase shift, or sensitivity to head velocity between the high- and low-gain samples of any of the cell types. Nonetheless, there was a consistent tendency, evident in all the functionally defined cell groups, for the sensitivity to be about 20% greater in the high-gain samples. However, this difference is small by comparison with the fourfold difference in VOR gain. 4. Detailed scrutiny of the response properties of individual cells suggested that the small differences in sensitivity reflect small changes distributed throughout the population, rather than large and potentially significant changes within a small sub-population. 5. Our data indicate that large, adaptive changes in the gain of the VOR are accompanied by only minor changes in the vestibular sensitivity and no changes in the phase shift or resting discharge rates of cells in the MVN. It remains possible that large changes in vestibular sensitivity occurred in cells we did not sample or in subgroups we could not identify. We argue that this is unlikely and that the major changes underlying VOR plasticity occur after the first central synapse in the VOR pathways.  相似文献   

6.
Vestibulo-ocular reflex (VOR)-optokinetic reflex (OKR) interaction was studied in normal human subjects during active sine-like head movements in the horizontal plane for a variety of vestibular-optokinetic stimulus combinations (frequency range, 0.05-1.6 Hz). At low to mid frequencies (< 0.2 Hz) the eyes tended to be stabilized on the optokinetic pattern, independently of whether the head, the pattern, or both were rotated. At higher frequencies, the OKR gain was attenuated and, in each of the differing stimulus combinations, the eyes became increasingly stabilized in space. Qualitatively similar results were obtained when, for the same visual-vestibular combinations, the head was passively rotated at 0.05 and 0.8 Hz. The data could be simulated by a model which assumes a linear interaction of vestibular and optokinetic signals. It considers the OKR with its negative feedback loop of primordial importance for image stabilization on the retina and the VOR only as a useful addition which compensates for the limited bandwidth of the OKR during high frequency/velocity head rotations in a stationary visual environment.  相似文献   

7.
In two experiments, we examined the possibility that the human vestibulo-ocular reflex (VOR) is subject to dual adaptation (the ability to adapt to a sensory rearrangement more rapidly and/or more completely after repeated experience with it) and adaptive generalization (the ability to adapt more readily to a novel sensory rearrangement as a result of prior dual adaptation training). In Experiment 1, the subjects actively turned the head during alternating exposure to a visual-vestibular rearrangement (target/head gain = 0.5) and the normal situation (target/head gain = 0.0). These conditions produced both adaptation and dual adaptation of the VOR but no evidence of adaptive generalization when tested with a target/head gain of 1.0. Experiment 2, in which exposure to the 0.5 gain entailed externally controlled (i.e., passive) whole body rotation, resulted in VOR adaptation but no dual adaptation. As in Experiment 1, no evidence of adaptive generalization was found.  相似文献   

8.
The vestibulo-ocular reflex (VOR) was studied in nine human subjects 2-15 months after permanent surgical occlusion of one posterior semicircular canal. The stimuli used were rapid, passive, unpredictable, low-amplitude (10-20 degrees), high-acceleration (3000-4000 degrees/s2) head rotations in pitch and yaw planes. The responses measured were vertical and horizontal eye rotations, and the results were compared with those from 19 normal subjects. After unilateral occlusion of the posterior semicircular canal, the gain of the head-up pitch vertical VOR--the vertical VOR generated by excitation from only one and disfacilitation from two vertical semicircular canals--was reduced to 0.61 +/- 0.06 (normal 0.92 +/- 0.06) at a head velocity of 200 degrees/s. In contrast the gain of the head-down pitch vertical VOR--the VOR still generated by excitation from two, but disfacilitation from only one vertical semicircular canal--was within normal limits: 0.86 +/- 0.11 (normal 0.96 +/- 0.04). The gain of the horizontal VOR in response to yaw head rotations--ipsilesion 0.81 +/- 0.06 (normal 0.88 +/- 0.05) and contralesion 0.80 +/- 0.11 (normal 0.92 +/- 0.11)--was within normal limits in both directions (group means +/- two-tailed 95% confidence intervals given in each case). These results show that occlusion of just one vertical semicircular canal produces a permanent deficit of about 30% in the vertical VOR gain in response to rapid pitch head rotations in the excitatory direction of the occluded canal. This observation indicates that, in response to a stimulus in the higher dynamic range, compensation of the human VOR for the loss of excitatory input from even one vertical semicircular canal is incomplete.  相似文献   

9.
Useful medical diagnostic information has been reported from low-frequency rotational testing of the horizontal vestibulo-ocular reflex (VOR) of patients with vestibular disorders. Servocontrolled rotating systems have been used as the only practical method to generate stimuli over lower VOR frequency response ranges, the decade from 0.01 to 0.1 Hz. Active head movements have been used for testing the human VOR at higher frequencies, exceeding 0.5 Hz. We examined whether active head movements could be used also to test the VORs of subjects over lower frequency ranges, extending to 0.02 Hz. We used a swept-frequency, active head movement protocol to generate a broad-band stimulus. Eye position was recorded with electro-oculography. Head velocity was recorded with a rotational sensor attached to a head band. Six individual test epochs from human subjects were concatenated to form complex, periodic waveforms of head and eye velocity, 75 seconds in duration. Broad-band cross-spectral signal processing methods were used to compute horizontal VOR system characteristics from these waveforms extending from 0.02 to 2 Hz. The low-frequency VOR data appeared to originate from amplitude modulation of high-frequency active movements, acting as carrier signals. Control experiments and processing of simulated data from a known system excluded the possibility of signal processing artifacts. Results from six healthy subjects showed low-frequency gains and phase values in ranges similar to those from published rotational chair studies of normal subjects. We conclude that it is feasible to test the human VOR over extended low-frequency ranges using active head movements because of amplitude modulation of the head and eye signals.  相似文献   

10.
In order to test the hypothesis of an interaction between neck proprioception and the vestibulo-ocular reflex (VOR), we rotated 16 healthy subjects both facing forward and with their heads passively turned 70 degrees to either side. We found that gain tended to be lower when the subjects were rotated with their heads turned opposite to the direction of rotation compared to when they were rotated in the same direction, but facing forward. Although our findings were not statistically significant, they suggest that there is a measurable interaction between neck proprioception and the VOR in subjects with normal vestibular function. Asymmetric neck muscle proprioceptive signals seem to give rise to asymmetric functioning of the VOR, which, at least in part, could be the pathogenesis of cervical dizziness. If so, this could lead to misinterpretation of vestibular assessments in patients with neck pain who also complain of dizziness.  相似文献   

11.
In real-life situations, such as during locomotion, or while driving a vehicle, it is necessary to maintain visual fixation and tracking in the presence of the visual flow of the surroundings, which represents a potentially adequate stimulus for the elicitation of optokinetic nystagmus. The present study is concerned with the influence of vestibular disorders, whether pathological or experimentally induced, on those cortically controlled fixation mechanisms, predominantly in the smooth pursuit system, which are involved in suppressing optokinetic information. The study examines the possibility of obtaining an objective measure to assist in counselling patients with unilateral vestibular loss on their vehicle driving ability. To this end, the influence of optokinetic and vestibular stimulation on the execution of smooth pursuit target tracking was measured by recording eye movements during a combination of standard pursuit tasks (0.25, 0.5 and 1 Hz sinusoidal) against standard optokinetic striped backgrounds (0, 30 and 60 degrees/sec). The influence of vestibular imbalance, induced in healthy subjects (n = 35) by unilateral caloric irrigation, and caused by unilateral vestibular loss (in five patients), was also examined under these conditions. During induced vestibular imbalance in normal subjects, and to a greater extent in the tested patients, significant deficits in smooth pursuit gain and increases in saccade frequency were observed during target pursuit against an optokinetic background. Moreover, the findings indicate that the most sensitive parameter for the influence of vestibular optokinetic stimuli on smooth pursuit is frequency of saccades, rather than the gain factor. The tests described here are appropriate for clinical and medico-legal assessment of the influence of vestibular disorder on vehicle driving.  相似文献   

12.
Eye-head coordination during saccadic gaze shifts normally relies on vestibular information. A vestibulo-saccadic reflex (VSR) is thought to reduce the eye-in-head saccade to account for current head movement, and the vestibulo-ocular reflex (VOR) stabilizes postsaccadic gaze while the head movement is still going on. Acute bilateral loss of vestibular function is known to cause overshoot of gaze saccades and postsaccadic instability. We asked how patients suffering from chronic vestibular loss adapt to this situation. Eye and head movements were recorded from six patients and six normal control subjects. Subjects tracked a random sequence of horizontal target steps, with their heads (1) fixed in primary position, (2) free to move, or (3) preadjusted to different head-to-target offsets (to provoke head movements of different amplitudes). Patients made later and smaller head movements than normals and accepted correspondingly larger eye eccentricities. Targeting accuracy, in terms of the mean of the signed gaze error, was better in patients than in normals. However, unlike in normals, the errors of patients exhibited a large scatter and included many overshoots. These overshoots cannot be attributed to the loss of VSR because they also occurred when the head was not moving and were diminished when large head movements were provoked. Patients' postsaccadic stability was, on average, almost as good as that of normals, but the individual responses again showed a large scatter. Also, there were many cases of inappropriate postsaccadic slow eye movements, e.g., in the absence of concurrent head movements, and correction saccades, e.g., although gaze was already on target. Performance in patients was affected only marginally when large head movements were provoked. Except for the larger lag of the head upon the eye, the temporal coupling of eye and head movements in patients was similar to that in normals. Our findings show that patients with chronic vestibular loss regain the ability to make functionally appropriate gaze saccades. We assume, in line with previous work, three main compensatory mechanisms: a head movement efference copy, an active cervico-ocular reflex (COR), and a preprogrammed backsliding of the eyes. However, the large trial-to-trial variability of targeting accuracy and postsaccadic stability indicates that the saccadic gaze system of patients does not regain the high precision that is observed in normals and which appears to require a vestibular head-in-space signal. Moreover, this variability also permeates their gaze performance in the absence of head movements.  相似文献   

13.
Vestibuloocular reflex performance and adaptation were examined during vestibulocerebellar inactivation by localized lidocaine microdialysis or injection in goldfish. In the light, eye velocity perfectly compensated for head velocity (Vis-VOR) during sinusoidal yaw rotation (1/8 Hz +/- 20 degrees). In the dark, the reflex (VOR) gain was slightly reduced (gain approximately 0.8-0.9). In neither Vis-VOR nor VOR, was gain altered after 1 h of lidocaine microdialysis in the vestibulocerebellum. Before adaptation of reflex gain, the initial suppression or augmentation of Vis-VOR reflex gain produced by in-phase or out-of-phase visual-vestibular stimulation was also unaffected by cerebellar inactivation. Subsequently, 3 h of adaptive reflex training in either the in-phase or out-of-phase paradigm (acquisition phase) respectively decreased (0.30 +/- 0.09) or increased (1.60 +/- 0.08) VOR gain during artificial cerebral spinal fluid (CSF) microdialysis. However, microdialysis of lidocaine completely blocked adaptive gain changes during a 3-4 h period of continuous application. This effect was reversible because VOR gain changes were produced 1 h after lidocaine was replaced with CSF as the dialysate. After adaptive training, bilateral CSF injections (0.25 microl/side) into the vestibulocerebellum did not alter the normal retention or decay of adapted gain changes during a 3 h period in the dark (retention phase). However, injection of lidocaine into the vestibulocerebellum completely blocked retention of the adapted VOR gain returning the gain to values recorded before adaptation. In contrast to either acute or chronic surgical removal, lidocaine inactivation of the cerebellum by microdialysis did not alter either Vis-VOR and VOR behavior or interactive Vis-VOR performance over a wide range of gain extending from 0.3 to 1.4. Thus short-term VOR motor learning is a dynamic process requiring either continuous operation of brain stem cerebellar loops or, alternatively, modifiable sites within or directly influenced by the cerebellum. Our data supports the latter hypothesis, because the direct brain stem VOR pathways appear to be unaltered after cerebellar inactivation, and, hence, independent of the VOR-adapted state.  相似文献   

14.
Through the process of habituation, continued exposure to low-frequency (0.01 Hz) rotation in the dark produced suppression of the low-frequency response of the vestibulo-ocular reflex (VOR) in goldfish. The response did not decay gradually, as might be expected from an error-driven learning process, but displayed several nonlinear and nonstationary features. They included asymmetrical response suppression, magnitude-dependent suppression for lower- but not higher-magnitude head rotations, and abrupt-onset suppressions suggestive of a switching mechanism. Microinjection of lidocaine into the vestibulocerebellum of habituated goldfish resulted in a temporary dishabituation. This suggests that the vestibulocerebellum mediates habituation, presumably through Purkinje cell inhibition of vestibular nuclei neurons. The habituated VOR data were simulated with a feed-forward, nonlinear neural network model of the VOR in which only Purkinje cell inhibition of vestibular nuclei neurons was varied. The model suggests that Purkinje cell inhibition may switch in to introduce nonstationarities, and cause asymmetry and magnitude-dependency in the VOR to emerge from the essential nonlinearity of vestibular nuclei neurons.  相似文献   

15.
The vestibulo-ocular reflex (VOR) of 125 healthy subjects was examined over the frequency range of 0.5-5 Hz with the head autorotation test (HART). During the HART the subjects fixated at a steady target while moving their heads horizontally from side to side with increasing frequencies according to auditory signals. The gain was determined as the ratio between the amplitude of the eye and head movements in five frequency bands between 0.5 and 5 Hz. The phase difference between the eye and head movements was determined in both degrees and milliseconds. The ability to reach high-frequency bands was evaluated. The mean gain was close to unity up 5 Hz, when it decreased to 0.91. The mean phase difference showed a lead of approximately 5 degrees at frequencies below 2 Hz, and at frequencies above 2 Hz there was no phase difference within the resolution of the test. The frequency band of 5 Hz was reached by 78% of the subjects, and that of 4 Hz was reached by 94% of the subjects. In summary, the HART is a new approach with which to study VOR function and determine accurately the VOR for healthy subjects. The normal upper frequency limit is 4 Hz in the HART.  相似文献   

16.
We studied optokinetic nystagmus (OKN), optokinetic afternystagmus (OKAN) and visual-vestibular interaction in five patients with markedly elevated vestibulo-ocular reflex (VOR) gain due to cerebellar atrophy. All had impaired smooth pursuit, decreased initial slow phase velocity of OKN, and impaired ability to suppress the VOR with real or imagined targets. OKN slow phase velocity gradually built up over 25-45 s, reaching normal values for low stimulus velocities (< or = 30 deg/s). Initial velocity of OKAN was increased, but the rate of decay of OKAN was normal. These findings can be explained by models that include separate velocity storage and variable gain elements shared by the vestibular and optokinetic systems.  相似文献   

17.
Although the subjective reports of patients suggest that anxiety may aggravate vertigo and imbalance, there has been little research into how anxiety might directly affect balance system functioning. We conducted two studies to examine the effect of anxiety and arousal on the vestibulo-ocular reflex (VOR). In the first study, pre-lest fear ratings were obtained from 20 normal subjects and 36 anxious subjects immediately prior to rotation and caloric testing. Fear ratings were significantly correlated with the maximum slow-phase velocity (SPV) of nystagmus induced by caloric testing. In the second study, we assessed the VOR response to rotation of 36 normal subjects under 3 task conditions: a) minimal alerting (counting backwards during rotation), b) physical arousal (induced by exertion prior to rotation); c) mental arousal (induced by performance of stressful mental tasks during rotation). Both the physical and mental tasks induced a significant increase in heart rate compared with the alerting condition. The maximum SPV of the nystagmus induced by rotation was significantly greater during performance of the mental task than in the other two conditions. These combined results indicate that anxiety may influence the gain of the VOR.  相似文献   

18.
We have shown previously that head-down neck flexion (HDNF) in humans elicits increases in muscle sympathetic nerve activity (MSNA). The purpose of this study was to determine the effect of neck muscle afferents on MSNA. We studied this question by measuring MSNA before and after head rotation that would activate neck muscle afferents but not the vestibular system (i.e., no stimulation of the otolith organs or semicircular canals). After a 3-min baseline period with the head in the normal erect position, subjects rotated their head to the side (approximately 90%) and maintained this position for 3 min. Head rotation was performed by the subjects in both the prone (n = 5) and sitting (n = 6) positions. Head rotation did not elicit changes in MSNA. Average MSNA, expressed as burst frequency and total activity, was 13 +/- 1 and 13 +/- 1 bursts/min and 146 +/-34 and 132 +/- 27 units/min during baseline and head rotation, respectively. There were no significant changes in calf blood flow (2.6 +/- 0.3 to 2.5 +/- 0.3 ml.100 ml-1.min-1, n = 8) and calf vascular resistance (39 +/- 4 to 41 +/- 4 units; n = 8). Heart rate (64 +/- 3 to 66 +/- 3 beats/min; P = 0.058) and mean arterial pressure (90 +/- 3 to 93 +/- 3; P < 0.05) increased slightly during head rotation. Additional neck flexion studies were performed with subjects lying on their side (n = 5), MSNA, heart rate, and mean arterial pressure were unchanged during this maneuver, which also does not engage the vestibular system. HDNF was tested in 9 of the 13 subjects. MSNA was significantly increased by 79 +/- 12% (P < 0.001) during HDNF. These findings indicate that neck afferents activated by horizontal neck rotation or flexion in the absence of significant force development do not elicit changes in MSNA. These findings support the concept that HDNF increases MSNA by the activation of the vestibular system.  相似文献   

19.
The relative contribution of vestibular and somatosensory information to triggering postural responses to external body displacements may depend on the task and on the availability of sensory information in each system. To separate the contribution of vestibular and neck mechanisms to the stabilization of upright stance from that of lower body somatosensory mechanisms, responses to displacements of the head alone were compared with responses to displacements of the head and body, in both healthy subjects and in patients with profound bilateral vestibular loss. Head displacements were induced by translating two 1-kg weights suspended on either side of the head at the level of the mastoid bone, and body displacements were induced translating the support surface. Head displacements resulted in maximum forward and backward head accelerations similar to those resulting from body displacements, but were not accompanied by significant center of body mass, ankle, knee, or hip motions. We tested the effect of disrupting somatosensory information from the legs on postural responses to head or body displacements by sway-referencing the support surface. The subjects' eyes were closed during all testing to eliminate the effects of vision. Results showed that head displacements alone can trigger medium latency (48-84 ms) responses in the same leg and trunk muscles as body displacements. Nevertheless, it is unlikely that vestibular signals alone normally trigger directionally specific postural responses to support surface translations in standing humans because: (1) initial head accelerations resulting from body and head displacements were in opposite directions, but were associated with activation of the same leg and trunk postural muscles; (2) muscle responses to displacements of the head alone were only one third of the amplitude of responses to body displacements with equivalent maximum head accelerations; and (3) patients with profound bilateral vestibular loss showed patterns and latencies of leg and trunk muscle responses to body displacements similar to those of healthy subjects. Altering somatosensory information, by sway-referencing the support surface, increased the amplitude of ankle muscle activation to head displacements and reduced the amplitude of ankle muscle activation to body displacements, suggesting context-specific reweighting of vestibular and somatosensory inputs for posture. In contrast to responses to body displacements, responses to direct head displacements appear to depend upon a vestibulospinal trigger, since trunk and leg muscle responses to head displacements were absent in patients who had lost vestibular function as adults.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The aim of the present study was to determine whether administration of the synthetic ACTH-(4-9) analogue, Org 2766, directly into the ipsilateral vestibular nucleus complex (VNC), would enhance vestibular compensation following unilateral labyrinthectomy (UL). Either artificial cerebrospinal fluid (ACSF; n = 4) or Org 2766 (0.67 nmol kg-1 every 4 h for 52 h; n = 4), was administered directly into the VNC via a stainless steel cannula connected to an osmotic minipump implanted s.c. Three symptoms of UL, spontaneous ocular nystagmus (SN), roll head tilt (RHT) and yaw head tilt (YHT), were measured at 10, 20, 25, 30, 40, 45 and 50 h post-UL. Org 2766 produced a significant decrease in the frequency of SN and accelerated its compensation. Org 2766 had no significant effect on either the compensation of RHT or YHT. This result suggests that vestibular compensation is enhanced by short ACTH fragments as a result of direct action on the ipsilateral VNC itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号