共查询到20条相似文献,搜索用时 78 毫秒
1.
结合郑州轨道7号线龙门路站—张家村站区间盾构上跨4号线丰庆路站—文化路站区间项目,通过上跨前评估及三维模拟,上跨中掘进参数及同步注浆,上跨后二次及督促注浆,能够有效控制隧道变形,保证运营隧道安全,并结合4号线隧道自动化监测研究运营隧道变形规律,为类似盾构上跨既有运营地铁施工提供参考. 相似文献
2.
3.
4.
5.
通过南京龙蟠路明挖隧道近距离上跨南京地铁盾构隧道的施工实例,论述了在既有隧道上方修建明挖隧道的施工方法及措施.该技术有效控制了盾构隧道上浮等潜在危险源,确保了施工安全,为以后类似工程实施提供借鉴参考. 相似文献
6.
新建北京地铁14号线盾构隧道下穿运营的地铁15号线区间竖向净距仅1.9 m,施工中采取了加强地面监测、划分区段、及时补浆和封堵洞门、使用改进型管片、设聚氨酯隔离环等优化措施。监测结果表明,盾构机穿越时上方隧道沉降曲线稳定。 相似文献
7.
新建隧道上跨施工会不可避免地对既有隧道的结构安全造成一定的影响,本文依托兴泉铁路绿谷二号隧道上跨既有福厦铁路陈坝隧道工程,对近距离上跨既有铁路隧道的施工技术进行研究。首先,基于工程实际情况进行施工的重难点分析,提出工程重难点问题的针对性措施;其次,对洞口工程、开挖方法、喷锚支护及注浆、防水等主要施工方法及工艺进行探讨;最后,得到对邻近杭深线施工技术的启发,研究成果可为类似工程提供一定的借鉴。 相似文献
8.
结合现代城市轨道交通区间隧道盾构法施工实例,针对在城市中心城区采用盾构法施工穿越既有运营的地铁隧道的关键施工控制技术和地铁运营保障开展技术研究,总结提出了盾构下穿施工的重点控制环节,对有效管控盾构施工安全风险、进一步提高区间隧道盾构法施工的安全技术水平具有重要的指导作用。 相似文献
9.
某地新建地铁隧道斜穿上跨既有地铁隧道形成的双层四线叠交隧道的近接施工问题,采用基于有限差分法的数值模拟手段,深入研究了新建隧道左、右线不同施工方案对既有线的变形影响规律,结果表明:(1)先左后右施工方案中,新建隧道左线通过四线叠交处至新建右线掘进时有四线叠交处,其中既有线左线拱顶、拱底位置处竖向位移变化幅度较大,分别为655.22%、920.04%;(2)先左后右施工方案中,新建隧道右线通过四线叠交处至施工结束,其中既有线右线拱顶、拱底位置处竖向位移变化幅度较大,分别为174.46%、191.45%;(3)先右后左施工方案中,新建隧道右线通过四线叠交处至新建隧道左线掘进有四线叠交处,其中既有线右线拱顶、拱底位置处竖向位移变化幅度较大分别为524.09%、744.87%;(4)先右后左施工方案中,新建隧道左线通过四线叠交处至施工结束,其中既有线左线拱顶、拱底位置处竖向位移变化幅度较大分别为217.94%、223.92%;(5)既有隧道左线、右线左、右拱腰最大水平位移绝对值先右后左施工方案分别为先左后右施工方案的3.99倍、3.53倍、2.03倍和8.12倍.从横断面方向看,距既有线远侧隧道线先施工,近既有线隧道线后施工,既有线所受整体影响更小. 相似文献
10.
某地新建地铁隧道斜穿上跨既有地铁隧道形成的双层四线叠交隧道的近接施工问题,采用基于有限差分法的数值模拟手段,深入研究了新建隧道左、右线不同施工方案对既有线的变形影响规律,结果表明:(1)先左后右施工方案中,新建隧道左线通过四线叠交处至新建右线掘进时有四线叠交处,其中既有线左线拱顶、拱底位置处竖向位移变化幅度较大,分别为655.22%、920.04%;(2)先左后右施工方案中,新建隧道右线通过四线叠交处至施工结束,其中既有线右线拱顶、拱底位置处竖向位移变化幅度较大,分别为174.46%、191.45%;(3)先右后左施工方案中,新建隧道右线通过四线叠交处至新建隧道左线掘进有四线叠交处,其中既有线右线拱顶、拱底位置处竖向位移变化幅度较大分别为524.09%、744.87%;(4)先右后左施工方案中,新建隧道左线通过四线叠交处至施工结束,其中既有线左线拱顶、拱底位置处竖向位移变化幅度较大分别为217.94%、223.92%;(5)既有隧道左线、右线左、右拱腰最大水平位移绝对值先右后左施工方案分别为先左后右施工方案的3.99倍、3.53倍、2.03倍和8.12倍.从横断面方向看,距既有线远侧隧道线先施工,近既有线隧道线后施工,既有线所受整体影响更小. 相似文献
11.
随着大城市地下轨道交通网日益密集,地下隧道结构下穿既有地铁结构将逐渐成为一个很常见的工程问题,因此,以南水北调总干渠输水隧道下穿北京地铁1号线五棵松站工程作为研究对象,通过几何水准测量的方法对车站底板结构及道床结构进行施工中及工后的沉降观测。经过对沉降监测数据的分析,总结出了该类型地下穿越工程的沉降变形规律,为今后类似工程提供了一定的可借鉴的经验。 相似文献
12.
13.
随着盾构施工技术的兴起,盾构过地铁站或者盾构过暗挖扩大段等施工现象越来越常见,因此,以北京地铁M15号线的盾构机过站为案例,通过盾构到达、空推、二次始发施工实践,使得盾构过站技术能够达到安全快速施工效果,又能合理节约成本,为今后类似盾构机过地铁车站施工提供参考。 相似文献
14.
红山饭店位于岗前平地 ,渡线上方 ,距南京站站北区明挖基坑围护结构约 6 5~ 8 0m ,房屋横轴与地铁线路轴线夹角 7 2° ,区间隧道右线和渡线局部下穿红山饭店 ,隧顶距房屋基底 7 0~ 7 3m。该饭店采用钢筋混凝土扩展基础 ,局部配有h =5 0cm的地圈梁 ,结构每层设置圈梁 ,饭店主体结构工况基本完好 ,外墙、内墙局部有竖向、横向裂纹或裂缝。岗前平地自上而下分别为可 软塑状杂填土 ,厚2~ 2 8m ;可 硬塑状粉质粘土 ,厚 3 5~ 4 0m ;硬塑混合土 ,厚 1 5~ 2 1m ;强风化闪长玢岩 ,厚 4~ 10m。1 红山饭店加固方案根据“控制隧道变形为… 相似文献
15.
上海轨道交通13号线世博过江段工程长清路站~世博园站区间隧道需下穿已建轨交7号线隧道.以此为例,详细阐述了盾构在整个隧道施工过程中所采取的一系列有针对性的施工技术,确保在轨交7号线的稳定和安全的基础上顺利施工轨交1 3号线工程. 相似文献
16.
提出了盾构隧道穿越既有地铁车站结构安全的评估方法,包括风险识别、风险评估及风险控制三方面的内容。以某工程为例,给出了该车站结构的风险等级,通过数值计算,预测了该车站的变形量,分析了车站结构的安全性,提出了变形控制指标。研究结果表明:该车站结构的风险等级为特级,结构安全等级为Ⅰ级,变形控制指标为底板最大沉降为15mm,纵向变形斜率为3‰。 相似文献
17.
18.
19.
地铁隧道下穿高架桥施工控制技术 总被引:1,自引:0,他引:1
地铁10号线隧道下穿城铁13号线知春路站高架桥基础,隧道结构距离桩基础最近点只有0.247m,隧道采用浅埋暗挖法施工,下穿高架桥段采用增加临时仰拱、加强超前支护,砌衬背后及时注浆以及洞内采用水平袖阀管注浆等工程措施进行试验,以达到加固隧道周边地层、提高桥桩承载力、控制地面沉降的效果。采取加固措施后地面沉降非常小,对相邻桥墩基本上没有影响。施工结果显示:采取上述措施后,基本达到了加固土体、控制沉降、保证隧道掘进安全通过风险点的目的。 相似文献