首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
介绍了一种半导体激光器驱动系统,主要包括温度稳定控制电路、电流稳定控制电路和保护电路,给出了具体的参考电路。通过同时对激光器的工作电流及其温度进行精密控制,使得激光器能稳定工作。实验表明,该驱动控制的激光器在恒温(室温)下工作90min输出波长漂移不超过0.6pm 。外界环境温度10-50℃范围内,激光器输出波长漂移不超过16pm,适用于对激光器稳定要求高的场合。  相似文献   

2.
基于TMS320F2812的半导体激光器温度控制   总被引:2,自引:0,他引:2  
介绍了一种基于数字信号处理器的半导体激光器PWM温度控制系统,给出了一种采用比较放大的热电制冷器驱动电路.能避免MOSFET桥的直通短路.在数字控制系统中,采用32位TMS320F2812芯片作为控制核心,通过其GPIOA0口从数字式温度传感器DS18820中读取半导体激光器的工作温度.使用事件管理器输出的PWM信号来控制热电制冷器工作.针对半导体激光器对温度稳定性的要求,利用DSP强大的运算能力,采用参数自整定的模糊PID算法实现系统的温度控制.在实验室环境下.采用载波频率为50 kHz的PWM控制,系统在2 min内成功将半导体激光器的工作温度稳定在25.0±0.1℃,且超调量不大于0.5℃.实验结果证明:采用DSP技术,能更好地实现算法的控制效果.提高系统控制的精确度和稳定度;采用比较放大的TEC驱动电路,能有效解决传统驱动电路的"死区"问题.  相似文献   

3.
介绍了一种利用单片机控制的大功率半导体激光驱动电源。系统采用恒流源、光功率反馈、继电保护、慢启动、慢关闭等软保护措施,实现对半导体激光器输出光功率的软调整及有效保护。同时,采用半导体温度控制技术,对半导体激光器进行恒温控制,从而实现了半导体激光器光功率稳定、可靠、准确输出。经实验证明,在0℃-40℃的环境温度下,该驱动电源可使激光器的光功率稳定度优于0.5%;温度控制精度优于±0.3℃。  相似文献   

4.
刘荣战  蒋威  宋健 《光电子.激光》2022,(12):1263-1270
使用COMSOL软件对体布拉格光栅(volume Bragg grating, VBG)外腔半导体激光器进行稳态热分析模拟仿真,研究VBG对半导体激光器的温度特性的影响。利用15%、20%两种VBG对888 nm半导体激光器进行外腔锁模,测试并分析外腔锁模条件下半导体激光器的输出特性和温度特性。结果表明,VBG外腔结构能够改善半导体激光器的光谱特性,提高半导体激光器的工作温度。在25℃条件下,当采用15%衍射效率的体光栅进行外腔锁模时,最大输出光功率为10.7 W,输出波长稳定在888 nm,光谱线宽为0.3 nm。  相似文献   

5.
本文设计了用于机载激光引信的激光脉冲测距发射单元,该发射单元由激光器和驱动电路构成.激光器选择纳秒级脉冲大功率固体激光器,采用半导体激光二极管作为泵浦源,提出了一种获取同步信号的方法,并对其整体结构进行了考虑.为满足引信特殊需要,为半导体泵浦固体激光器设计了专用驱动电路,解决了固体激光器在不同温度下重复频率不稳定性问题,避免了使用体积庞大的致冷器.激光发射单元工作可靠,在很大温度范围内重复频率稳定并灵活可调.5 V电源时,输出峰值功率达2 018 W、脉宽3.3 ns、重复频率达10 kHz.  相似文献   

6.
用于干涉测量的光栅外腔半导体激光器   总被引:3,自引:3,他引:3  
赵伟瑞  谢福增 《中国激光》2004,31(8):11-914
研制了用于光干涉测量的单稳频、窄线宽光栅外腔半导体激光器(LD)。它由出光面镀有增透膜的单管半导体激光器、光束校正准直系统、闪耀光栅、注入电流驱动系统及温度控制系统组成。闪耀光栅作为外腔光反馈元件对单管半导体激光器输出的纵模进行选择,使之工作在单纵模状态。外腔的引入还使输出光的谱线宽度得以大大压窄。注入电流驱动系统为半导体激光器提供工作电流。温度控制系统由双层温控组成。第一层用于控制单管半导体激光器管芯温度;另一层用于及时带走第一层温控产生的热量,并消除环境温度影响,使外腔温度稳定。该温控系统可使所构成激光器的温度稳定在1‰℃量级。对研制的外腔半导体激光器的特性进行测试,其输出功率恒定、模式单一稳定、谱线宽度优于1.4MHz。  相似文献   

7.
半导体激光器的输出波长和功率随温度变化而变化,为了确保激光器工作性能,须对其进行恒温控制。采用脉冲宽度调制功率驱动器DRV595驱动半导体制冷器的方法,设计了一种双向大电流输出的高精度温度控制系统。在S域对系统进行了建模分析,搭建经典比例-积分-微分控制器,采用桥式采样电阻,纯硬件电路实现,结构简单,省掉了数字控制器的复杂软件编写。在常温试验中取得了±0.03℃的控制精度,DRV595集成脉冲宽度调制和双向MOSFET,输出电流最大为±4A。双向电流驱动半导体热电制冷器,实现了无死区控制。结果表明,脉冲宽度调制方式驱动和低输出级电阻大大降低了功率耗散。该系统工作稳定、功耗低、控制精度较高,具有实用价值。  相似文献   

8.
大功率宽条分布反馈激光器研究   总被引:4,自引:1,他引:4  
大功率半导体激光器一般用作抽运源,但其抽运的离子吸收峰带宽一般都比较小。为提高大功率半导体激光器对固体或光纤激光器等的抽运效率,就要降低半导体激光器的输出波长随注入电流和热沉温度的漂移系数。分析了光栅深度和光栅填充因子对激光器输出波长锁定效果的影响,实验验证确定出合适的光栅参数,依据优化条件得出合适的激光器腔长,制备出锁定效果良好的宽条分布反馈激光器。该激光器的单管腔长2.4mm,发光条宽100μm,连续最大输出功率400mW,热沉温度为15℃时的输出波长为954nm,输出波长随注入电流的漂移系数为0.67nm/A,输出波长的温漂系数为0.046nm/K。  相似文献   

9.
基于MSP430F449的半导体激光器温控系统设计   总被引:1,自引:1,他引:0  
为了改善传统的半导体激光器温度控制系统体积大、噪音大且精度有限等缺点,研制开发了一种基于MSP430F449单片机与DS18B20数字温度传感器的半导体激光器温控系统。结合PID控制算法,利用PWM脉宽调制,控制热电制冷器的驱动电流,实现对激光器的恒温控制。实验表明,该系统温控精度优于±0.1℃,能够为半导体激光器提供稳定的温度环境。  相似文献   

10.
数字式半导体激光驱动电源控制系统设计   总被引:6,自引:1,他引:5  
介绍了一种单片机控制的半导体激光驱动电源控制系统。通过恒流源及光功率反馈控制半导体激光器的工作电流;采用数字式温度传感器测温,半导体制冷器作为制冷元件,对半导体激光器进行恒温控制;同时还采用了一系列的保护措施,从而实现了半导体激光器光功率稳定、可靠、准确输出。  相似文献   

11.
温度是影响半导体激光器性能指标之一, 为了实现快速稳定的温度控制,研究了系统的温度控制硬件和算法。系统以MSP430低功耗微控制处理器为核心, 采用自动调节制冷片电压和脉冲宽度调制(PWM)输出脉冲方式相结合的驱动电路, 根据系统的机械控制热平衡模型和装置的高低温实验建立了自适应温度调节算法。经过高低温实验研究, 从-40~50 ℃控制到温度为23 ℃时, 激光器温度稳定所消耗的时间分别为2 min 30 s和1 min 30 s, 其中控制精度为0.2 ℃。对激光器功率稳定性进行实验分析, 控温前后激光功率的稳定性, 从5%提高到1%以内, 满足人眼安全对激光功率密度的要求, 该方案的设计对于小功率、快速稳定的激光系统的设计具有可借鉴意义。  相似文献   

12.
大功率体光栅外腔半导体激光器的输出特性   总被引:2,自引:4,他引:2  
宽条形大功率半导体激光器(LD)存在光谱温漂系数大、光谱宽度宽的缺点,为了改善宽条形大功率半导体激光器的光谱特性,采用一种体光栅(VBG)离轴外腔方法实现了宽条形大功率半导体激光器光谱特性的明显改善和高效率工作.宽条形半导体激光器的外腔结构主要包括激光器输出光束的快、慢轴准直光学透镜和离轴放置的体光栅.宽条形半导体激光器的激射条宽为100μm,当激光器工作电流为4.0 A时,外腔激光器的输出功率高达3.4 W,斜率效率为1.0 W/A,光谱宽度由自由出射条件下的2~3 nm减少为0.2 nm,峰值波长的温漂系数小于0.015 nm/℃.  相似文献   

13.
张龙  陈建生  高静  檀慧明  武晓东 《红外与激光工程》2018,47(10):1005003-1005003(7)
为了解决大功率半导体激光器的输出波长和功率的稳定性问题,设计了一套大功率激光器恒流驱动电源及温控系统。利用深度负反馈电路实现对激光器驱动电流的恒流控制,采用硬件比例-积分(Proportional-Integral,PI)温控电路结合恒流驱动,控制半导体制冷器(Thermoelectric Cooler,TEC)的工作电流,实现激光器工作温度的精确控制。所设计的驱动电源可实现输出电流0~12.5 A连续可调,同时具有电流检测、过流保护、晶体管-晶体管逻辑(Transistor-Transistor Logic,TTL)信号调制等功能。所设计的温控系统的控制精度可达到0.05℃,同时设定温度连续可调,温度可实时监测。实验结果表明该设计能够保证稳定的电流输出和温度控制,满足大功率激光器的使用要求。  相似文献   

14.
王宗清  段军  曾晓雁 《激光技术》2015,39(3):353-356
为了减小温度对半导体激光器输出光波长和功率稳定性的影响,设计了由恒流模块驱动半导体制冷器,通过改变恒流模块的电流来控制半导体制冷器的制冷量,利用分段积分的比例-积分-微分控制算法,选择最优控制参量,实现大功率半导体激光器的精密温控系统。系统包括高精度测温电路、控制核心DSP F28335、半导体制冷器控制电路、人机交互及通信模块。在5℃~26℃环境下对系统进行测试,实现50W大功率半导体激光器的恒温控制,温控范围为15℃~45℃,温控精度达到0.02℃。结果表明,该系统温控范围广,控制精度高,满足大功率半导体激光器的温控要求。  相似文献   

15.
楼康平  赵柏秦 《红外与激光工程》2019,48(4):405004-0405004(5)
半导体激光器(LD)的工作波长是随温度变化的,对LD进行温控是扩展全固态激光器(DPSSL)正常工作温度范围的常用方法,但常用的控温方法在-50~70℃的宽温区范围存在体积大、能耗高、效率低等问题。通过实验测试得到GaAs量子阱激光器的波长温度漂移系数为0.25 nm/℃,分析了Nd:YAG晶体吸收谱的多峰特性。提出采用高温时工作波长为808 nm的GaAs量子阱激光器作为泵浦源,利用Nd:YAG晶体的795.7 nm和808 nm的两个吸收峰,通过分段加热控温降低温控功耗的方案。实验结果显示:全固态激光器在两个吸收峰处得到的输出脉冲特性基本相同,在温度较低时,分段控温的加热功率减小了4.7 W,接近不分段最大加热功率的一半。  相似文献   

16.
高温环境下高功率半导体激光器驱动电源设计   总被引:1,自引:0,他引:1  
半导体激光器驱动电源的性能直接影响着激光输出稳定性和激光器寿命。给出40℃高温环境下100w高功率光纤耦合半导体激光器模块的驱动电源设计方法,主要包括:恒流源设计、TEc双向温度控制器及相应的单片机控制器和保护电路设计等。该驱动电源实现了电流输出范围0~45A连续可调,电流控制精度优于1%;控温范围+15℃~+35℃,控温精度0.5℃。  相似文献   

17.
在半导体激光器的使用过程中,驱动电路直接影响着激光器的稳定性。对此文中提出了一种高效、稳定,宽功率输出范围的设计方案,采用采样电阻和恒流电路实现稳定的闭环控制,得到恒定的驱动电流;利用热敏电阻温度特性,温度控制电路结合单片机控制系统,实现温度的闭环控制,从而实现了稳定的温度控制要求;结合恒温,恒流控制以及单片机系统,设计功率闭环控制方案。实验结果表明,不同温度下,功率计测得功率与驱动电流成良好的线性关系,且功率范围宽、电路可靠工作时间长、激光器单色性稳定、系统稳定性好。  相似文献   

18.
廖平  莫少武 《激光技术》2013,37(4):541-546
为了实现光纤的精确快速测量, 设计了一种高稳定功率连续可调的1310nm/1550nm半导体激光驱动电源。该电源采用电流串联负反馈技术组成精密恒流源驱动半导体激光二极管,恒温控制电路驱动半导体制冷器,从而保证了激光器输出功率的稳定。控制器局域网络总线电路实现激光源的功率连续可调及激光的选择,通过变速积分PID控制算法消除了积分饱和,加速系统温度的稳定。采用激光保护和软启动电路,实现半导体激光器可靠稳定运行。结果表明,半导体激光器工作在室温25℃时,温度稳定性达0.01℃,激光长期输出功率稳定度达0.018dB。相对于传统的1310nm/1550nm半导体激光光源,该光源稳定性高、稳定速度快、体积小,方便光纤在线测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号