首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用金属有机沉积(MOD)法制备了SrTiO3(STO)外延薄膜作为YBa2Cu3O7-δ涂层导体的缓冲层.以乙酸锶、钛酸丁酯为前驱物配制了Sr离子浓度为0.125 mol.L-1的SrTiO3前驱溶液.研究了950℃下不同烧结时间(90、120、150 min)对在双轴织构的Ni-W(200)金属基带上沉积STO外延薄膜晶体取向和微观形貌的影响.结果表明,在950℃氩氢混合气氛(Ar-4%H2)下适宜于STO薄膜外延生长的最佳烧结时间为120 min;STO缓冲层薄膜表面平整致密,无裂纹和孔洞,具有良好取向,可作为YBa2Cu3O7-δ涂层导体的缓冲层.  相似文献   

2.
以Ni合金为基底的YBCO涂层导体具有三明治结构,从下至上分别是:Ni合金、缓冲层、YBCO涂层与稳定层.在实用超导薄膜内部,局域超导电流由于晶粒弱连接、缺陷或裂纹等原因突然消失的情况下,一旦能量耗散超过临界值将会导致超导薄膜失超.在典型的YBCO涂层导体结构中,由于缓冲层是绝缘的氧化物,只能通过顶层的Ag或Cu稳定层的分流来实现电流传输方向的调整.如果在YBCO与正常金属基底之间存在连续的导体连接,即缓冲层导电,就可以不需稳定层,减少涂层导体的整体厚度,提高工程临界电流密度JE.如果钙钛矿导电缓冲层均匀无裂纹且足够厚,就可以起到隔离、外延、电流传输三重功效,同时提高JE.采用全化学溶液法制备了具有(00l)择优取向的BaPbO3,La0.5Sr0.5TiO3钙钛矿导电缓冲层与YBCO涂层,对于探索低成本的实用化工艺路线具有重要的实际应用价值.  相似文献   

3.
氧化铝缓冲层对ZnO薄膜性质的影响   总被引:1,自引:0,他引:1  
采用反应磁控溅射的方法在石英衬底上制备了一层AI2O3薄膜,并将其作为后续ZnO薄膜生长的缓冲层.然后,采用反应磁控溅射的方法在AI2O3缓冲层上制备了ZnO薄膜.对比研究了引入Al2O3缓冲层前后,ZnO薄膜的结构和光学特性.通过引入Al2O3缓冲层,发现ZnO薄膜样品的(002)方向X射线衍射峰的半峰宽(FWHM)明显减小,光致发光谱中与缺陷相关的可见发光峰强度明显减弱,吸收光谱中的吸收边变得更加陡峭.这些结果表明引入Al2Q3缓冲层后,ZnO薄膜的结构和光学特性得到了很大改善,为制备高质量ZnO薄膜提供了参考.  相似文献   

4.
采用射频反应磁控溅射技术,利用低温低功率下生长的氮化铝(AlN)作为缓冲层,在铟锡复合氧化物(ITO)玻璃衬底上制备出具有良好c轴择优取向的多晶AlN薄膜.采用X射线衍射仪(XRD)、原子力显微镜(AFM)和场发射扫描电子显微镜(FESEM)研究了缓冲层对薄膜结晶特性和表面形貌的影响.结果表明,该缓冲层在提高AlN薄膜结晶质量的同时,薄膜的表面粗糙度由19.1 nm减小到2.5 nm,使薄膜表面更为平滑、致密.剖面扫描电子显微镜(SEM)照片显示AlN晶粒呈高度一致的柱状生长体制.通过分析样品的透射光谱,计算得到AlN薄膜的折射率和消光系数分别为2.018 7和0.007 7.  相似文献   

5.
采用离子注入方法在两种取向不同的 Na Cl衬底上制备 Ag单晶薄膜 ,研究离子注入引起晶粒长大、形成单晶体的过程 ,探讨离子注入 Ag薄膜晶体生长的机制  相似文献   

6.
ZnO是一种宽禁带半导体,由于其优良的物理和化学性能得到越来越多的青睐,并成为了光电器件的首选材料。本文采用射频磁控溅射技术在石英衬底上溅射ZnO同质缓冲层,之后再生长ZnO薄膜。缓冲层温度分别为373、473、573和673 K,生长温度为773 K。X射线衍射结果表明ZnO薄膜为六方结构,并且是(002)择优取向。综合吸收光谱和和光致发光谱,缓冲层温度为673 K时制备的薄膜的结晶质量最好。  相似文献   

7.
采用硫代硫酸钠、硫酸镉,配以有机酸NTA调节溶液pH值,首次在碱性环境中电沉积制备CdS薄膜,并将其应用到Cu2ZnSnS4(CZTS)薄膜太阳能电池中作为缓冲层.实验探讨了pH值、溶液浓度、沉积电位对薄膜晶体结构、形貌、界面等微观结构以及光学特性的影响、在pH值为9.36、Cd2+浓度为0.025mol/L、沉积电位为-1.7V时,获得了表面均匀致密而无针孔、近化学计量原子比、禁带宽度为2.4eV的CdS薄膜,将其应用于CZTS薄膜太阳能电池中,所制备的缓冲层CdS薄膜展现了与CZTS薄膜良好的匹配性,CZTS/CdS的P—n结质量得到改善.  相似文献   

8.
为了解决氧化锌在柔性电子器件应用方面的问题,利用脉冲激光沉积法(PLD)在聚对苯二甲酸乙二醇酯(PET)柔性衬底上室温下制备镓掺杂氧化锌(ZnO∶Ga)和镓掺杂Zn1-xMgxO (Zn1-xMgxO∶Ga)透明导电薄膜,采用X射线衍射仪(XRD),扫描电镜,霍尔效应测试仪,紫外-可见光分光光度计对结构和性能进行表征,探讨靶材中镁质量分数对薄膜结构及光电性能的影响,并采用预沉积ZnO无机缓冲层法来改善薄膜样品的性能.研究结果表明,在柔性衬底上通过优化生长参数制备出性能良好的ZnO基透明导电薄膜,通过缓冲层的预沉积可以明显改善薄膜的结构和电学性能,薄膜电阻率最低可至8.27×10-4 Ω·cm,在可见光区平均透射率超过70%.  相似文献   

9.
用化学溶液沉积法,尤其是金属有机物沉积法(MOD)制备第二代超导带材,包括缓冲层和YBaCuO涂层,在当前超导带材研究中具有重要的意义.因为其成本低、操作简单、便于规模化生产,可能成为制备高温超导带材最有前途的方法.文内详述了用化学气相沉积,化学溶液沉积,电泳共沉积以及超声雾化热分解等方法制备YBaCuO超导涂层的国内外进展,介绍了在LaAlO3单晶上以及金属基带上制备钙钛矿结构缓冲层的主要种类和特征,也介绍了当前研究的热点之一,导电缓冲层的作用、制备方法和研究进展.  相似文献   

10.
实验采用射频磁控溅射技术,制备了不同溅射时间下AlN缓冲层的ZnO薄膜,研究了薄膜的结构、形貌及电学性能.结果表明,不同溅射时间下AlN缓冲层ZnO薄膜的生长依然是(002)择优取向,而且当缓冲层溅射时间为60min时,ZnO薄膜的结构和电学性能最好.  相似文献   

11.
CeO2 and Ce0.8M0.2O2-d films (M = Mn, Y, Gd, Sm, Nd and La) with (00l) preferred orientation have been prepared on biaxially textured Ni-W substrates by metal organic decomposition (MOD) method. The factors influencing the formation of cracks on the surface of these CeO2 and doped CeO2 films on Ni-W substrates were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM) analysis, atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results indicate that many factors, such as the change of the ionic radii of doping cations, the transformation of crystal structure and the formation of oxygen vacancies in lattices at high annealing temperature, may be related to the formation of cracks on the surface of these films. However, the crack formation shows no dependence on the crystal lattice mismatch degree of the films with Ni-W substrates. Moreover, the suppression of surface cracks is related to the change of intrinsic elasticity of CeO2 film with doping of cations with a larger radius. SEM and AFM investigations of Ce0.8M0.2O2-d (M = Y, Gd, Sm, Nd and La) films reveal the dense, smooth and crack-free microstructure, and their lattice parameters match well with that of YBCO, illuminating that they are potentially suitable to be as buffer layer, especially as cap layer in multi-layer architecture of buffer layer for coated conductors.  相似文献   

12.
可见光催化剂Ag_3VO_4的制备、表征及其光催化性能的研究   总被引:1,自引:0,他引:1  
通过化学沉淀的方法来制备光催化剂Ag3VO4,用紫外-可见光谱、X射线衍射和荧光光谱对其进行表征.通过光催化还原Cr6+和光催化氧化甲基橙的效率来评价该催化剂的活性.实验研究了不同的制备条件对Ag3VO4催化活性的影响.实验结果表明,在可见光下,在过量银条件下制备的Ag3VO4有较好的光催化氧化活性和光催化还原活性,且其紫外-可见吸收光谱有较大程度的红移,提高了对光的利用率.实验同时还研究了在过量银条件下制备出的Ag3VO4的稳定性和循环次数.同时对影响Ag3VO4的光催化活性的机理还进行了探讨.  相似文献   

13.
以ZnO烧结陶瓷为靶材,应用射频磁控溅射技术在(001)蓝宝石、(100)MgO衬底上制备ZnO波导薄膜。利用棱镜耦合、X射线衍射、RBS背散射分析等技术研究了所沉积薄膜的光波导及内部结构信息。结果表明:在两种衬底上所沉积的ZnO薄膜可以形成优良的平面光波导结构;薄膜结晶状况为存在少量其他晶向的C轴择优取向;薄膜含有的Zn及O组分原子数比例为近化学计量比;薄膜的沉积速率受衬底材料表面能作用轻微影响;薄膜的有效折射率较ZnO体材料小且受衬底材料影响。生长在蓝宝石衬底上ZnO薄膜的平均晶粒尺寸较在MgO衬底上的小,且其随膜厚的增加无明显变化,但在MgO衬底上晶粒尺寸则随膜厚的增加有增大趋势。  相似文献   

14.
为了改善铝合金材料的耐腐蚀性能,研究了以正硅酸乙酯(TEOS)为主要原料,加入一定量的-氨丙基三乙氧基硅烷(KH550),并引入纳米TiO2进行复合,以冰乙酸为催化剂,采用溶胶-凝胶法在铝合金基体表面形成复合涂层,并利用氟硅烷进行表面修饰。腐蚀电化学测试分析结果表明,纳米TiO2掺杂制备的复合涂层能够明显的提高铝合金基体的防护性能。并考察了纳米TiO2含量对涂层性能的影响,结果表明,在纳米TiO2质量分数为0.04%时制备的涂层性能最佳,相应的试样在3.5%(质量分数)NaCl溶液中的腐蚀电流密度约为5.965×10 9 A/cm2,而同等实验条件下铝合金基体腐蚀电流密度为7.216×10 5 A/cm2,涂层的存在使腐蚀速率降低了4个数量级,说明涂层对铝合金基体具有显著的防护效果,并且利用扫描电镜(SEM)和接触角测试来考察涂层的致密性和憎水性。  相似文献   

15.
以乙二醇作为还原剂,采用微波法制备长径比不一的银纳米材料。采用SEM和XRD对不同长径比的纳米银进行了表征。以不同长径比的纳米银作为导热填料成功的制备了导热性能优异的环氧复合材料。环氧复合材料的热性能和力学性能测试表明:当长径比为33的银纳米线在较低的填充量具有较高的热导率,比填充纳米方块的环氧复合材料高约9倍(热导率为16.63 W·m-1.K-1)。填充银纳米线的环氧复合材料的抗剪切强度(以铝为基板的抗剪切强度为18.7 MPa)相比于填充相同体积分数的银纳米方块和银纳米棒的环氧复合材料均有不同程度的提高。  相似文献   

16.
首先通过金属有机化合物热分解(MOD)法在Si(100)基片上制备出LaNiO3(LNO)薄膜,再通过溶胶-凝胶(sol-gel)法,在LNO/Si(100)衬底上制备出(PbxLa1-x)TiO3(PLT)铁电薄膜。经XRD分析表明,LNO薄膜具有(100)择优取向的类钙钛矿结构,PLT/LNO/Si薄膜具有四方相钙钛矿结构,同时以(100)择优取向。最后对薄膜的介电性和铁电性进行了测试,发现薄膜介电常数适中,铁电性良好。  相似文献   

17.
采用Sol-gel法,在普通载玻片和Si(100)上使用旋转涂覆技术制备了具有c轴择优取向生长的ZnO薄膜。利用XRD和SEM研究了衬底和热处理温度对ZnO薄膜的物相结构、表面形貌和(002)定向性的影响。结果表明,sol—gel旋涂法制备的ZnO薄膜为六角纤锌矿结构,玻璃衬底上生长的ZnO薄膜为多晶形态,Si(100)衬底表现出更优取向生长特性。随着热处理温度的升高,c轴择优取向程度逐渐增强,晶粒尺寸逐渐增大,ZnO的晶格参数先增加后减小。当温度在700℃时长出明显的柱状晶粒。  相似文献   

18.
采用课题组新发展的氧化辅助脱合金(OAD)技术,对由磁控溅射设备在不锈钢衬底上沉积的Cu0.54Al0.46合金薄膜进行化学腐蚀处理,从而得到CuxO多孔纳米结构薄膜。利用粉末X射线衍射仪、扫描电子显微镜和透射电子显微镜对腐蚀产物的晶体结构、微观形貌和化学成分进行了表征分析。研究结果表明,腐蚀产物为一大面积且均匀的CuxO多孔纳米结构薄膜,它主要由片状结构的Cu8O7和棒状结构的Cu2O共同组成。进一步地,对CuxO多孔纳米结构薄膜的形成机理进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号