首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal fluorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was measured to be 60-70 nm. The findings highlight a strong dependence of NV incorporation on crystal size, particularly with crystals less than 50 nm in size.  相似文献   

2.
利用有机溶剂去除PAN基炭纤维表面的集束剂与染剂.然后通过乙炔热裂解沉积对其进行表面改性,以期获得兼具高机械强度和优良导电性的高性能PAN基炭纤维.采用SEM、AFM、XRD、Raman等方法对PAN基炭纤维在改性前后的微观结构、结晶性、抗拉强度、弹性模量、导电性等进行了分析.研究结果表明采用化学气相沉积法可以提高或者明显改善石墨化处理后的PAN基炭纤维的力学性能(抗拉强度为2GPa,弹性模量为270GPa)和导电性(5×10-4Ω·cm).  相似文献   

3.
Current rectification property of as-grown single-walled carbon nanotubes (SWNTs) is investigated. The SWNTs are grown by chemical vapor deposition (CVD) process. The process allowed to grow long strands of SWNT bundles, which are then used to fabricate multiple arrays of switching devices with the channel length of 3, 5, 7 and 10 microm on a 15 mm x 15 mm SiO2 on Si substrate. Regardless of the channel length, a majority of the fabricated devices show current rectification characteristics, with high throughput of current (I) in the forward bias (V) giving the forward and reverse current ratio (Ifor/Irev) of approximately 10(6). Atomic force microscopic (AFM) analysis of the device structure and surface topology of SWNT suggest the observed rectification of current to possibly result from (a) cross-tube junctions, (b) a mixture of metallic and semiconducting tubes in the SWNT bundles, and/or (c) chirality change along a single tube. The exact mechanism underlying the observed rectification could not be conclusively established. However, the analyses of the experimental results strongly suggest the observed rectification to result from Schottky-type diode properties of SWNTs with mixed chirality along the tube.  相似文献   

4.
With reducing diamond grain size to nano-grade, the increase of grain boundaries and non-diamond phase will result in the change of the optical properties of chemical vapor deposition (CVD) diamond films. In this paper, the structure, morphology and optical properties of nanocrystalline diamond (NCD) films, deposited by hot-filament chemical vapor deposition (HFCVD) method under different carbon concentration, are investigated by SEM, Raman scattering spectroscopy, as well as optical transmission spectra and spectroscopic ellipsometry. With increasing the carbon concentration during the film deposition, the diamond grain size is reduced and thus a smooth diamond film can be obtained. According to the data on the absorption coefficient in the wavelength range from 200 to 1100 nm, the optical gap of the NCD films decreases from 4.3 eV to 3.2 eV with increasing the carbon concentration from 2.0% to 3.0%. From the fitting results on the spectroscopic ellipsometric data with a four-layer model in the photon energy range of 0.75-1.5 eV, we can find the diamond film has a lower refractive index (n) and a higher extinction coefficient (k) when the carbon concentration increases.  相似文献   

5.
采用一种改进的化学气相沉积法在炭纤维表面制备碳纳米管。为了提高炭纤维表面的润湿性能,炭纤维在浸渍之前先在CVD设备中在真空下973 K的高温处理,然后在硝酸和浓硫酸体积比为3∶1的混合酸中酸处理30 min。而改进的化学气相沉积法关键在于让催化剂的还原步骤和碳纳米管的生长步骤同时进行。这样通过减小过渡金属元素与炭纤维之间的接触时间从而降低了它们之间的相互扩散,在确保了炭纤维本身的力学性能下降程度明显小于用普通化学气相法制备的情况下生长出长且茂密的碳纳米管阵列。另外,经过对工艺参数的优化发现当用乙醇作溶剂,Fe(NO3)3.9H2O溶度为100 mmol/L,氢气和碳源气体比值为4/1,而生长时间为30 min时得到最好的碳纳米管阵列。  相似文献   

6.
Qian Zhang 《Materials Letters》2009,63(11):850-851
In this work, Y-shaped carbon fibers with high purity were successfully synthesized by CVD using copper tartrate as a catalyst precursor at low reaction temperature, 279 °C. A model has been proposed for interpreting the mechanism of the Y-shaped carbon fibers growth. It is suggested that the introduction of hydrogen is the key factor to the formation of three carbon fibers growth faces on every the agglomeration of copper monocrystalline catalyst particles and lead to the formation of Y-shaped carbon fibers subsequently. The Y-shaped carbon fibers were characterized by field emission scanning electron microscopy, transmission electron microscopy and X-ray diffraction.  相似文献   

7.
《Thin solid films》2002,402(1-2):302-306
The structure and photoluminescence (PL) at room temperature of ZnO films deposited on Si(111) substrates by metal-organic chemical vapor deposition (MO-CVD) using diethylzinc (DEZ) and CO2 was investigated. It was found that these properties strongly depend on growth temperature and pressure. ZnO films can be deposited only at low pressure and in the temperature region of 500–650°C. The samples grown at certain conditions can generate stronger luminescence of ZnO. When the growth temperature increased to 650°C, the ZnO2 phase was observed in X-ray diffraction (XRD) patterns of the samples. This characteristic became evident after the samples annealed. Appearance of a ZnO2 phase results in production of a new emission band centered at 575 nm in the PL spectrum at room temperature, and the green emitting band also disappears.  相似文献   

8.
By using scanning tunneling microscopy, the plots of tunneling current versus applied voltage, at the local points for hydrogenated and oxygenated chemical vapor deposited diamond films, were investigated. For comparison, the measurement points were adopted on the centers of the crystalline grains and at the grain boundaries, respectively. The results indicated that, for the hydrogenated chemical vapor deposited diamond, the field emission character is much better on the center of the crystalline grains than at the grain boundary. In contrast, for the oxygenated samples, the crystalline grains show a poor field emission character. The two diamond surfaces exhibit similar field emission characters at the grain boundaries. The surface emission mechanisms of the hydrogenated chemical vapor deposited diamond films were also discussed.  相似文献   

9.
The nature of film stresses in hot-filament chemical vapour deposited (HFCVD) diamond thin films on tungsten carbide substrates, is reported. Commercial WC substrates were subjected to various surface treatments. Subsequently, they were coated with a diamond film and examined for stresses using X-ray diffraction. All but one of the stress measurements indicated various levels of compressive stresses in the film and at the film–substrate interface. These stresses are compared with those obtained by other researchers. Intrinsic film stresses were also computed for diamond films and found to be tensile. WC drills, of 0.125 in. diameter, were also diamond coated and the stress levels measured along drill flanks and flutes. Significant variations were found in these stresses, and the results were analysed from a film–substrate adhesion perspective.  相似文献   

10.
Hydrogenated amorphous carbon (a-C:H) films were deposited by plasma enhanced chemical vapor deposition from methane, argon diluted methane, and nitrogen diluted methane at 26.7 Pa with a 13.56 MHz RF power supply. In this pressure regime, multiple-scattering of carbon species within the plasma phase is expected during the transport to the substrates placed on both the driven and the earthed electrodes. These films were analyzed using UV-VIS optical transmittance, monochromatic ellipsometry, Raman spectroscopy and current-voltage measurements. From these results, the effect of the plasma conditions and the effective flux of the carbon species controlled by the input power through the negative self bias are found to be important in the deposition process. The growth conditions at the higher pressure regime are important to synthesize a-C:H films from low energetic carbon species, since it reduces the defect density and improves the quality of the films. Furthermore, the effect of nitrogen on the growth conditions of a-C:H:N films is observed.  相似文献   

11.
To synthesize diamond films by microwave plasma enhanced chemical vapor deposition (MPECVD), the methane concentration (CH4/H2)plays a crucial role. It is well-known that there always exists a critical methane concentration (≤0.6%) only below which a good quality diamond film can be obtained. In this study, however, the phenomena of diamond synthesis resulting from high carbon concentration conditions were observed. The molten metals, e.g., Ag, Cu, were used as the deposition substrates on which crystalline diamonds can be achieved from a methane content of CH4/H2≥6% or even from solid carbon sources. These results suggest that there may exist a low methane content boundary layer (<0.6%) in the proximity of molten metal surface on which suitable species, CH, CH+, Hα and Hβ are composed for the diamond nucleation and growth similar to the condition as in the conventional low methane contents. The molten metal inclines to dissolve other forms of carbonaceous materials other than diamond, and thus keeps a much higher steady supply of carbon atoms that enhances the quality as well as the growth rate of the forming diamonds. Received: 23 June 2001 / Accepted: 23 July 2001  相似文献   

12.
Amorphous carbon nitride, a-CNx, thin films were deposited by hot filament CVD using a carbon filament with dc negative bias voltage on the substrate. The effects of the negative bias and the filament components on the binding structure of the films are investigated by XPS. The composition ratio of graphite to amorphous carbon in the filaments affects the bonding structure of carbon and nitrogen in the films, although the nitrogen content in the films is almost same as 0.1. The nitrogen content in the films changes from 0.1 to 0.3 as the negative bias changes from 0 to − 300 V.  相似文献   

13.
The article presents results of structural studies of polycrystalline diamond thin films deposited by hot filament CVD on silicon substrates. The films were characterized using Scanning Electron Microscopy (SEM), Raman Spectroscopy (RS), Electron Backscattered Diffraction (EBSD), Energy Dispersive Spectroscopy (EDS) and Secondary Ion Mass Spectroscopy (SIMS). Both the EBSD patterns and Raman spectra confirm that the grains visible in the electron micrographs are diamond micro-crystallites. The residual stress in the films is found to be in the range between −4.29 GPa and −0.56 GPa depending on the sample thickness. No evidence of lonsdalite and graphite has been registered in the polycrystalline material of the investigated samples. Evidence of the existence of silicon carbide at the diamond/silicon interface is presented. It is also suggested that an amorphous carbonaceous film covers the silicon surface in the regions of holes in the thin diamond layers.  相似文献   

14.
This paper is to report a novel method to synthesize diamond crystal by using a well developed chemical vapor deposition process, but on a liquid substrate, while substrates of prevailing practice are solid. The substrate materials are metals which become liquid at diamond deposition temperature, such as elements Sn and Ga, and eutectic alloys of Cu-Ge, Sn-Ge. One result is that, while reported diamond crystal size was about 10 to 40 micrometers on the solid substrate, on the liquid substrate, the crystal size has reached so far about 300 micrometers. Received: 17 May 2000 / Reviewed and accepted: 8 June 2000  相似文献   

15.
Plasma-enhanced chemical vapor deposition of nanocrystalline diamond   总被引:1,自引:0,他引:1  
Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.  相似文献   

16.
Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.  相似文献   

17.
The piezoresistive property of n-type and p-type nanocrystalline silicon thin films deposited on plastic (PEN) at a substrate temperature of 150 °C by hot-wire chemical vapor deposition, is studied. The crystalline fraction decreased from 80% to 65% in p-type and from 84% to 62% in n-type films, as the dopant gas-to-silane flow rate ratio was increased from 0.18% to 3-3.5%. N-type films have negative gauge factor (− 11 to − 16) and p-type films have positive gauge factor (9 to 25). In n-type films the higher gauge factors (in absolute value) were obtained by increasing the doping level whereas in p-type films higher gauge factors were obtained by increasing the crystalline fraction.  相似文献   

18.
Aluminum-induced crystallization of amorphous silicon films is discussed. Amorphous Si films were deposited by hot wire chemical vapor deposition onto Al coated glass substrates at 430 °C. Complete crystallization of a-Si films was achieved during a-Si deposition by controlling Al and Si layer thicknesses. The grain structure of the poly-Si films formed on glass substrate was evaluated by optical and electron microscopy. Continuous poly-Si films were obtained using Al layers with a thickness of 500 nm or less. The average grain size was found to be 10-15 μm, corresponding to a grain size/thickness ratio greater than 20.  相似文献   

19.
研究了衬底温度、核化密度、衬底表而预处理等工艺参数对微波等离子体化学气相沉积法在硅片上同时生长碳化硅和金刚石的影响.采用扫描电镜、X-射线衍射、喇曼光谱和红外光谱对样品进行了表征.结果表明:从高核化密度生长的金刚石膜中探测不到碳化硅;不论对硅衬底进行抛光预处理还是未抛光预处理,从低核化密度牛长的金刚石厚膜中总能探测到碳化硅.碳化硅生长在硅衬底上未被金刚石覆盖的地方,或者是在金刚石晶核之间的空洞处.碳化硅形成和金刚石生长是同时发生的两个竞争过程.此研究结果为制备金刚石和碳化砟复合材料提供了一种新的方法.  相似文献   

20.
This paper reports the findings of a study of the structural, mechanical, and tribological properties of amorphous hydrogenated carbon (a-C:H) coatings for industrial applications. These thin films have proven quite advantageous in many tribological applications, but for others, thicker films are required. In this study, in order to overcome the high residual stress and low adherence of a-C:H films on metal substrates, a thin amorphous silicon interlayer was deposited as an interface. Amorphous silicon and a-C:H films were grown by using a radio frequency plasma enhanced chemical vapor deposition system at 13.56 MHz in silane and methane atmospheres, respectively. The X-ray photoelectron spectroscopy technique was employed to analyze the chemical bonding within the interfaces. The chemical composition and atomic density of the a-C:H films were determined by ion beam analysis. The film microstructure was studied by means of Raman scattering spectroscopy. The total stress was determined through the measurement of the substrate curvature, using a profilometer, while micro-indentation experiments helped determine the films' hardness. The friction coefficient and critical load were evaluated by using a tribometer. The results showed that the use of the amorphous silicon interlayer improved the a-C:H film deposition onto metal substrates, producing good adhesion, low compressive stress, and a high degree of hardness. SiC was observed in the interface between the amorphous silicon and a-C:H films. The composition, the microstructure, the mechanical and tribological properties of the films were strongly dependent on the self-bias voltages. The tests confirmed the importance of the intensity of ion bombardment during film growth on the mechanical and tribological properties of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号