首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过对折线加强隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点和基本型异型节点试件进行低周往复加载试验,研究了隔板折线加强构造对节点破坏形态、承载力、塑性转角、滞回性能、骨架曲线、刚度退化和耗能等的影响。试验结果表明:基本型异型节点在刚度较大、几何尺寸变化较大的大截面梁翼缘对接焊缝侧边开裂,节点的塑性转角约为0.028 rad;隔板折线加强异型节点的主要破坏模式为隔板折线加强区形成塑性铰及延性拉断、梁腹板焊接孔开裂及梁翼缘对接焊缝断裂,其塑性转角可达0.034~0.057 rad,承载力和耗能能力较基本型异型节点分别提高16.5%~47.0%和21.2%~144.0%;隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点中,大截面梁先于小截面梁破坏,柱壁板间焊缝未发生撕裂破坏,轻骨料混凝土未发生压碎、拉裂、剥离或滑移破坏,节点的抗震性能主要受钢梁和隔板间焊缝破坏(而非轻骨料混凝土)的影响。  相似文献   

2.
通过对变截面方钢管轻骨料混凝土柱-H钢梁圆弧扩大头隔板贯通节点和基本型节点进行低周往复加载试验,分析了该类节点的破坏形态、滞回性能、延性、承载力、刚度退化与耗能能力等。结果表明:隔板圆弧扩大头节点先在隔板圆弧扩大区形成塑性铰,随后梁腹板焊接孔开裂,梁翼缘对接焊缝延性拉断;基本型节点在梁翼缘对接焊缝侧边开裂,裂纹扩展迅速至脆断;隔板圆弧扩大头构造明显提高了节点延性和耗能能力,有效降低了节点区焊缝过于密集和焊接热影响区的交叉影响,避免了梁翼缘对接焊缝处的应力集中和过早脆断;隔板圆弧扩大头节点的承载力、塑性转角和耗能能力较基本型节点分别提高16.09%~22.25%、17.34%~63.94%和24.97%~44.32%;加载到节点破坏时,节点域和柱内轻骨料混凝土未发生压碎、剥离、拉裂或滑移破坏,说明该类节点的抗震性能主要受钢梁与隔板间焊缝影响。  相似文献   

3.
为研究具有不同连接形式、隔板厚度和外伸长度的隔板贯通节点的力学性能,使用ABAQUS对不同构造节点进行数值模拟研究。基于试验结果验证了建模方法的准确性,并分别建立了全焊接、腹板栓接-翼缘焊接、下栓上焊、全螺栓四种连接形式的隔板贯通节点模型,对比了不同连接形式节点的力学性能,对产生差异的原因进行了机理分析。并进一步针对下栓上焊连接形式节点的隔板厚度、外伸长度对力学性能的影响进行了参数化分析。研究发现,具有翼缘螺栓连接形式的节点承载力更高且塑性铰远离节点核心区,基于此且考虑到施工因素,认为下栓上焊的连接形式具有显著优势;隔板过薄或隔板外伸长度过长均会降低该种节点的承载力和延性,隔板也会发生明显变形导致在核心区形成塑性铰,劣化节点受力性能。推荐工程中采用的隔板厚度宜比钢梁翼缘厚度厚3mm左右,隔板外伸长度宜控制在50~75mm。  相似文献   

4.
对圆弧加强隔板贯通方钢管轻骨料混凝土柱-H形梁与箱形梁异形节点和基本型异形节点进行循环加载试验,研究了贯通隔板圆弧扩大头构造对异形节点抗震性能的影响,获得了该类节点的破坏模式、滞回性能、承载力和塑性转角等抗震性能参数。基于试验结果和力学分析,建议了异形节点域的抗弯、抗剪计算模型,推导了异形节点域的抗弯、抗剪承载力计算公式。结果表明:基本型异形节点滞回曲线劣化明显,节点在刚度较大、几何突变的箱形梁翼缘对接焊缝边缘脆断;隔板圆弧加强异形节点的滞回曲线饱满,承载能力和刚度退化不明显,主要破坏模式为在隔板圆弧加强区形成塑性铰,梁翼缘对接焊缝延性开裂;加载至节点破坏时,贯通隔板与柱壁板间焊缝未发生撕裂破坏,节点域内轻骨料混凝土未压碎或拉裂,轻骨料混凝土与隔板和柱壁板间未发生剥离或滑移;隔板圆弧加强异形节点的塑性转角可达0.038~0.056 rad,承载力较基本型异形节点提高21.5%~56.2%。  相似文献   

5.
为研究隔板贯通方钢管柱-H型钢梁异型节点强震灾变机理和延性节点构造,对常规异型节点进行了低周往复循环加载试验和基于结构钢椭球面断裂模型及偶联的椭球面屈服模型的断裂分析.结果显示,常规异型节点在大截面梁翼缘对接焊缝边缘开裂,节点的塑性转角约为0.015rad,达不到FEMA要求的0.03rad.提出隔板圆弧扩大头节点构造并进行数值分析,结果表明,扩大头构造消除了对接焊缝沿梁翼缘宽度的几何突变,降低了对接焊缝的应力集中程度和脆断风险,塑性转角均达到了0.03rad,承载力较常规异型节点提高15.9%~39%.  相似文献   

6.
以2种方钢管混凝土柱-H形钢梁栓焊连接刚性节点为研究对象,通过静力试验和数值模拟考察梁柱节点在结构连续性倒塌条件下的受力性能,并对比内隔板与贯通式隔板两种柱横向加劲板形式对节点子结构抗力机制发展以及承载能力的影响。结果显示,节点初始破坏均位于梁下翼缘的连接截面。节点子结构在加载前期主要通过弯曲机制提供竖向抗力,在加载后期逐渐转变为依靠悬链机制抵抗上部荷载。相比于内隔板构造,贯通式隔板构造使梁下翼缘更容易产生断裂,梁下翼缘断裂所对应节点子结构变形大小主要对弯曲机制的发展产生影响,进而影响到节点子结构所能承担的最大动荷载。  相似文献   

7.
采用有限元软件ANSYS对钢管混凝土柱一翼缘削弱钢梁隔板贯通节点的内孔径大小进行分析。在参照有关文献推荐标准的基础上,验证该节点内孔径的取值范围。结果表明:当内孔径大小范围D-br≤d≤bd-bt,时对节点的受力性能影响不大。但当内孔径继续增大,节点在循环荷载下会提前破坏。  相似文献   

8.
方钢管混凝土柱-H型钢梁节点研究   总被引:1,自引:0,他引:1  
方钢管混凝土柱-H型钢梁节点的结构性能影响钢管混凝土结构在住宅建筑中的推广和应用。在总结方钢管混凝土柱-H型钢梁铰接、半刚接和刚接节点类型的基础上,对目前常用的内隔板节点和新提出的外肋环板节点进行了理论分析与试验研究。基于屈服线理论推导了内隔板节点强度的计算公式,提出了基于静力平衡理论的外肋环板节点的强度计算公式。结合工程实践对这两种节点进行了静力拉伸试验,分析了节点的破坏机制。借助于试件的应变测量,研究了节点的应变分布规律和应力传递机制,得到了荷载位移曲线、节点的屈服强度和极限强度。理论计算结果与试验值分析比较表明,填充混凝土的内隔板节点和外肋环板节点具有较好的刚度和延性。  相似文献   

9.
对3个十字形隔板贯通节点进行柱顶恒定轴力和梁端横向往复荷载作用下的试验.3个足尺试件设计变化的参数为隔板厚度和核心区柱壁厚度.基于试验结果,采用有限元软件ABAQUS对试件进行非线性分析和计算,得到梁端荷载-位移滞回曲线并与试验进行对比,且利用有限元软件对试验过程应力分布进行分析.试验结果及有限元分析表明:对于隔板贯通节点,其隔板的厚度以及核心区柱壁的厚度对核心区的承载力有重要影响;梁端塑性铰破坏模式与核心区凹曲剪切破坏模式下,试件的滞回曲线均饱满而稳定,且耗能能力均能满足要求;核心区在受剪破坏模式下,其承载力和性能基本上只与核心区柱腹板和隔板厚度有关,而与核心区柱翼缘厚度无关.  相似文献   

10.
为研究钢管混凝土柱-H钢梁节点在有、无隔板条件下的力学特性,基于有限元分析软件ABAQUS进行不同节点参数下的数值仿真模拟,在单调加载和拟静力加载工况下分别研究了内隔板、钢管柱壁厚度和H-型钢梁翼缘宽度对节点弯矩-转角关系的影响,考察了节点的整体变形、破坏形态以及滞回性能。结果表明:内隔板、钢管壁厚度能显著提高节点的初始转动刚度和极限承载能力,通过增大局部钢管柱的壁厚或钢梁翼缘宽度可使无隔板节点达到有隔板节点相近的弯曲性能,从而验证了无隔板节点的工程应用可行性。  相似文献   

11.
为研究新型矩形钢管混凝土柱-H形钢梁下栓上焊隔板贯通节点的抗震性能,设计了槽孔型、圆孔型和焊接型下栓上焊隔板贯通节点足尺试件,通过进行低周往复加载试验,考察不同的腹板连接构造形式对下栓上焊隔板贯通节点抗震性能的影响,并针对各试件的破坏特征和承载力、刚度、延性及耗能能力等抗震性能指标进行了试验数据的分析。最后运用力学分析的方法对节点的抗弯能力进行了理论研究,并与试验结果进行了比较。结果表明,不同的腹板连接构造对节点的抗震承载力影响不大,但对节点的延性、刚度和耗能能力有较大影响;适当降低节点域的刚度有利于改善节点的耗能性能;螺栓滑移能提高节点的耗能能力,对刚度退化的影响不大;圆孔型和焊接型节点具有较好的延性和较高的刚度;理论推导得出的节点抗弯承载力与试验结果相差在10%左右,且计算结果偏于安全。  相似文献   

12.
对折线隔板贯通变截面方钢管轻骨料混凝土边柱-钢箱梁节点和基本型节点进行了循环加载试验,获得了节点的破坏模式、滞回曲线、塑性转角、耗能能力、节点域应变演化等抗震性能指标.结果 显示,上隔板与小截面柱间焊缝的剪应变远大于下隔板与大截面柱间焊缝;基本型节点在几何突变剧烈的梁翼缘对接焊缝侧边、梁腹板角焊缝端点及构造复杂的梁腹板...  相似文献   

13.
陆天天 《山西建筑》2011,37(10):48-50
以方钢管混凝土柱隔板贯通式节点的力学性能为研究对象,采用ABAQUS进行模拟并得到拉伸全过程曲线,比较节点在不同构造形式下的受力性能差异。研究表明,倒圆角型节点具有较高的承载力和良好的延性。  相似文献   

14.
丁鑫标  杨锋 《工业建筑》2019,(3):153-159
提出了一种新型的方钢管混凝土柱-冷弯U形钢梁连接节点形式——上翼缘增设加强板式隔板贯通节点。设置了常规隔板贯通节点试件与增设加强板的隔板贯通节点试件的低周反复荷载加载试验,通过ABAQUS软件对低周反复荷载作用下节点受力性能进行分析,并结合试验结果验证了有限元模拟的适用性与准确性。对比发现:有限元分析得到的节点破坏特征、滞回性能与抗震性能等与试验结果吻合较好。在有限元分析基础上,研究了柱的宽厚比、U形钢梁壁厚及贯通隔板上的浇筑孔大小等因素对隔板贯通节点的影响。结果表明:柱的宽厚比、U形钢梁壁厚对节点滞回性能有显著的影响,而贯通隔板上的浇筑孔大小对节点的滞回性能影响较小。  相似文献   

15.
在传统内环板节点的基础上,提出一种适用于大直径钢管混凝土柱的梁柱节点。为了避免内环板宽度过大造成混凝土浇筑困难、用钢量较大的问题,在内环板焊接拉结钢筋,既可以减小钢材用量又便于在钢管柱内设置钢筋笼。为避免与钢梁翼缘焊接处的钢管表面发生层状撕裂,局部加大梁端翼缘宽度,并通过分析合理确定梁端扩翼宽度与扩翼角度。采用非线性有限元软件,对节点构造与应力分布、变形性能的关系进行分析。通过对比分析得到梁端的刚域长度,并对刚域长度与框架梁抗弯刚度的关系进行研究。为了验证该类节点设计的合理性,进行钢管混凝土柱-H形钢梁缩尺模型试验。有限元分析与缩尺模型试验结果表明,节点拉结钢筋可以提高内环板传力的有效性,有效减小节点区柱壁应力,当梁端扩翼宽度为1.5倍梁翼缘宽度、扩翼角度为1∶6时,节点区柱壁应力明显低于H形钢梁的应力,满足“强节点弱构件”的抗震设计理念。节点刚度对钢管混凝土柱-H形钢梁框架结构的侧向刚度影响显著,当梁端刚域长度约为钢柱直径的0.4倍时,框架梁的抗弯刚度可增加40%以上。节点抗震性能良好,可以实现“强节点弱构件”的抗震设计理念。  相似文献   

16.
进行了考虑压型钢板-混凝土组合楼板组合作用的方钢管混凝土柱-H形钢梁螺栓连接节点的静力性能试验研究。分别对无楼板、楼板受压、楼板受拉的3个足尺节点试件进行了静力加载试验,通过对比分析,考察了节点在单调荷载作用下的受力性能,包括初始转动刚度、极限承载能力等,研究了正、负弯矩作用下楼板组合作用对其受力性能的影响。研究结果表明:无板节点试件梁端位移延性系数达到2.2以上,满足抗震设计要求;组合节点和无板节点受力性能差别明显,相比于纯钢梁,组合梁横截面中和轴上移,组合节点的初始转动刚度、承载力与无楼板节点相比均有大幅度提高;组合节点螺栓开始滑移的荷载增大,最大滑移量减小;节点核心区剪切变形可忽略不计。  相似文献   

17.
碟簧垫片具有良好的变形和弹性复位能力,通过预压碟簧垫片可实现结构或构件的震后复位.通过将碟簧垫片引入至方钢管混凝土柱-H形钢梁连接节点,实现了此类节点的自复位功能.采用通用有限元程序ANSYS建立了节点的精细化有限元模型,并对带有碟簧的方钢管混凝土柱-H形钢梁连接节点进行了参数分析,重点考虑了碟簧初始预应力、碟簧数量、...  相似文献   

18.
对方钢管柱-H形钢梁隔板贯通节点梁端承受弯矩时的核心区弹性刚度进行研究,分析核心区的变形机制,在合理假定的基础上,进行理论推导,提出以剪切变形为核心区主要变形机制的隔板贯通节点核心区弹性刚度计算式。基于经试验验证的有限元模型,对隔板贯通节点进行参数化分析,将计算所得理论值与有限元结果进行对比,两者吻合良好,表明所提出的计算式能够准确地计算隔板贯通节点核心区弹性刚度。  相似文献   

19.
为了研究十字形钢管混凝土柱-H形钢梁框架中节点的抗震性能和破坏机理,进行了6个缩尺比为1∶2的节点拟静力试验。观察节点的损伤过程及破坏模式,分析柱端荷载-位移滞回曲线、节点核心区剪力-剪切变形曲线、层间位移角组成、耗能能力及应力分布。采用ABAQUS软件建立钢管混凝土异形柱-H形钢梁框架节点的有限元分析模型,分析结果与试验结果吻合良好,并对节点核心区受剪承载力和节点刚度进行参数分析。研究结果表明:节点的滞回曲线饱满,延性系数介于2.63~4.45之间,等效黏滞阻尼系数介于0.202~0.241之间,节点域的变形和耗能能力较强;建立的有限元分析模型可用于模拟节点的抗震性能,有限元参数分析结果表明增加节点区钢管厚度可以明显提高核心区受剪承载力,增加竖向肋板尺寸可以有效提高节点刚度。为保证竖向肋板节点达到刚性节点要求,建议柱钢板宽厚比不大于30;竖向肋板翼缘外高度、翼缘内高度以及竖向肋板与梁翼缘连接长度分别不应小于梁翼缘宽度的30%、15%和150%;竖向肋板厚度不应小于梁翼缘厚度。  相似文献   

20.
选择合适的材料本构模型,利用三维实体单元,对方钢管混凝土柱-钢梁外隔板式节点建立了同时考虑几何非线性和材料非线性的有限元分析模型,模拟分析了单调加载下节点的受力性能,较为精确地分析了节点区应力分布.结果表明,由有限元模型所得的位移曲线与试验所得的低周反复荷载作用下的骨架曲线极为相似,由有限元模型所得的应变分布和发展规律与试验结果一致.外隔板式节点的梁端弯矩一部分通过柱腹板两侧隔板传递到柱钢管腹板和核心混凝土,另一部分则主要通过柱角两内侧各0.25倍柱宽范围内的隔板直接传递给柱钢管翼缘和核心混凝土,柱角附近的隔板出现严重的应力集中,节点因受压翼缘屈曲、梁翼缘变截面最窄处形成塑性铰而破坏.节点核心区混凝土符合斜压杆受力机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号