首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复杂空间相贯节点广泛应用于大型空间结构中,目前规范尚无正确完善公式计算其承载力.为研究这类复杂空间相贯节点的受力性能和提出合理的构造改进措施,根据某实际工程,选择同时承受较大轴力和弯矩的XX形空间相贯节点进行有限元分析,并提出5种改进措施来改善节点的力学性态.分析结果表明,增加首先“破坏”支管的壁厚不能显著提高极限承载力;支管与主管汇交处设置加劲肋可以改善节点域的应力分布;在靠近节点域的支管内设置加强板可提高节点极限承载力;支管与主管之间交汇处设置贯穿加劲肋可显著减小主管的变形.  相似文献   

2.
为研究采用节点板、鞍板、环板加劲的K形相贯节点的受力特性,设计并制作了11个节点试件开展比例加载试验研究,得到其变形、应力分布及破坏模式等受力性能。利用经试验验证的有限元模型,分析了加劲组件和钢管参数对该类加劲相贯节点承载力的影响,并给出了受荷节点的力学模型。有限元分析和试验结果表明,该节点表现出无加劲相贯节点和带鞍板的管-板节点的受力特征,加劲构造能有效提高节点承载力。参数敏感性分析结果表明,增加支管和主管直径比、主管厚度、节点板长度和扇形鞍板圆心角可提高节点极限承载力。给出了极限承载力简化计算方法,计算结果和有限元分析及试验结果吻合较好。  相似文献   

3.
金晖  郭立湘  赵伟  王万祯 《工业建筑》2023,(4):125-130+140
为研制轻质高强桁架节点构造及其承载力,对Q345B方钢管轻骨料混凝土加劲X形节点和基本型节点进行了静力加载试验,考察了支主管间设置加劲板和支主管内浇灌轻骨料混凝土对节点破坏模式和承载力的影响。试验结果表明:加劲节点的破坏模式有加劲板与剪压支管焊缝开裂、剪压支管翼板被加劲板拉开、剪压支管在靠近加劲板外端截面剪压破坏;基本型节点的破坏模式为支主管焊缝开裂;支主管间设置的加劲板明显推迟了节点的屈服和断裂进程,支主管内浇灌轻骨料混凝土有效防止了方钢管屈曲,显著提高了节点承载力,加劲节点的焊缝开裂荷载和极限承载力较基本型节点分别提高63.3%和18.3%。根据加劲X形节点试验破坏模式,推导了考虑加劲板应力传递和扩散效应的方钢管轻骨料混凝土加劲X形节点的加劲板与剪压支管焊缝开裂、剪压支管翼板拉开、剪压支管剪压破坏的力学计算模型和承载力计算式。建议的加劲X形节点的承载力计算式的计算误差为-27.8%~+3.7%。  相似文献   

4.
剪力键是空间钢网格结构的核心构件,其剪切性能对整体结构抗剪能力影响很大。为研究加劲板对钢空腹夹层板剪力键剪切性能的影响,运用ABAQUS通用有限元软件,建立了有无竖向加劲板两组节点纯剪切状态下的数值模型。研究剪力键节点的抗剪性能,选取了竖向加劲板宽度和厚度对节点极限承载力进行参数分析,进而研究了竖向加劲板宽厚比对节点承载力的影响。研究结果表明:纯剪切状态下,有加劲板的构件承载力明显高于无加劲板的构件。竖向加劲板的设置,使得T型钢上(下)肋和方钢管可以整体协同受力,使剪力键节点域的受力更加均匀。竖向加劲板宽度和厚度对剪力键节点域承载力影响较大,给出了竖向加劲板宽厚比的建议取值范围,研究结论可为工程设计提供理论参考。  相似文献   

5.
进行了8个门式刚架端板连接节点的有限元分析,得出节点构造形式、端板厚度等因素对节点受力性能的影响规律.提出了门式刚架端板连接节点的弯矩-转角曲线计算模型.该模型考虑了节点域斜向加劲肋的作用,也考虑了节点域局部屈曲的发展过程和节点组件间的相互作用.通过与有限元分析及试验数据对比,表明该模型能够很好地反映门式刚架端板连接节点的受力性能,初始刚度和极限承载力等关键指标吻合较好.  相似文献   

6.
为研究格构式钢管混凝土风力发电机塔架K型焊接管板节点的受力性能,进行了4个圆钢管混凝土K型焊接管板节点的单调静力加载试验和1个空心圆钢管K型焊接管板节点的对比试验,探讨了该类节点的破坏模式、极限承载力以及节点区应力分布和发展规律,研究了各试验参数对节点受力性能的影响。试验结果表明:塔柱内混凝土的填充使得焊接管板节点的破坏模式由节点交汇处塔柱管壁塑性变形失效转变为节点板失效和腹杆失效;节点的极限承载力大幅增加,变形减小;节点几何参数和构造参数的变化对试件受力性能的影响较大;当节点板中部设置加劲肋时,节点的承载力提高,节点板平面外失稳得以避免;当节点极限承载力由腹杆屈曲或屈服承载力控制时,在一定范围内随着腹杆与塔柱管径比和壁厚比的增加,节点的承载力提高。  相似文献   

7.
《钢结构》2016,(7)
采用ANSYS有限元软件分析树状结构空间四分叉铸钢节点在弯矩作用下,节点内部四分管相交部位设置水平加劲板、节点核心区主分管局部内部加厚、节点核心区主分管局部外部加厚3种不同加强方式对节点抗弯极限承载力的影响。结果表明:在3种不同加强方式下,合理的加强设计均能显著提高节点抗弯极限承载力;节点内部四分管相交部位设置水平加劲板,为提高节点抗弯极限承载力,当加劲板厚度不同时,应在不同部位设置水平加劲板;节点核心区主分管局部内部加厚和外部加厚,在相同加劲尺寸下,节点的抗弯极限承载力相差不超过4%;节点核心区主管局部内部加厚到主管壁厚的1.57倍,分管局部内部加厚到分管壁厚的1.67倍,主管内部加厚长度等于主管直径的0.80倍,分管内部加厚长度为分管直径的1.75倍时,节点抗弯极限承载力显著提高。  相似文献   

8.
各国现行钢结构规范中,对螺栓连接钢管节点的极限承载力均未提及具体的构造措施及计算方法。通过对8个带加劲肋的螺栓连接钢管节点试件进行了单轴受压承载力试验研究,探讨了该类节点在单轴受压条件下的承载力-变形曲线和破坏模式,并对环板、主管及支管的应力-应变情况进行了分析。研究表明:仅通过单轴试验就推出所有破坏模式过于武断,建议限定说明,使其更合理;采用环板、十字连接板对支管与主管进行螺栓连接并设置加劲肋的钢管节点,其破坏模式为环板局部面外失稳,设置加劲肋能有效抑制整体的面外失稳;其次,加劲肋板贯穿主管可以提高节点的整体刚度和极限承载力,且施工方便,是值得采用的节点设计方法之一。  相似文献   

9.
提出了一种适用于H形柱的箱形节点域外伸端板弱轴连接,利用有限元软件ABAQUS对8个不同构造形式的端板连接进行了研究,分析了节点的破坏形式、弯矩 转角滞回曲线、承载能力及转动能力等。结果表明:8个不同构造形式的端板连接均为半刚性节点;在循环荷载作用下,箱形节点域端板连接节点的破坏均出现在端板上,而柱子节点域基本完好;当层间位移角为0.04 rad时,各节点的承载力均大于0.8倍钢梁全截面塑性弯矩;端板外伸加劲肋的设置使节点的极限承载力提高10%左右,但耗能能力却下降了4%,建议外伸端板不另设加劲肋;端板厚度为16 mm,即与蒙皮板厚度相差较小时,节点的承载能力、耗能能力较好;提升端板材性能提高节点承载能力,但端板材性提升过大反而会降低节点耗能能力,建议端板材性只提高1个等级。  相似文献   

10.
钢管—板连接节点是钢管输电塔常用的节点型式,但目前对其受力性能的研究还不够深入,缺乏相应可供工程设计使用的计算分析方法。采用ANSYS程序建立了K型钢管—板连接节点的有限元模型,对Kim所进行的系列节点试验进行了模拟对比分析,验证了有限元模型的合理性;通过变参数分析考查了K型钢管—板节点受力性能和节点破坏模式,研究了几何参数、主管应力比、加劲构造等对节点极限承载力的影响规律。在此基础上,提出了考虑支管约束作用的K型钢管—板连接节点极限承载力的计算方法,并验证了其适用性。  相似文献   

11.
通过对内置加强板的空间DKYY型圆钢管相贯节点的足尺试验和有限元模拟,分析节点应力和变形的发展过程。结果表明:节点在1.3倍设计荷载作用下保持弹性工作状态,具有较高的安全度,可以满足设计承载力需求,有限元分析较好地模拟了加载试验过程,有效弥补了节点试验测点较少的不足,可用于节点受力性能的全面评估。另外,选取较小的主管径厚比和内置加劲板可提高其径向刚度,确保节点破坏时主管处于弹性工作状态;支管加劲板对支管的弹性刚度没有影响,对其承载能力的影响不大,但可以减小支管的径向变形,局部改变支管的应力分布。该节点的构造设计是合理的,其在设计荷载作用下的受力是安全的。  相似文献   

12.
通过对内置加强板的空间DKYY型圆钢管相贯节点的足尺试验和有限元模拟,分析节点应力和变形的发展过程。结果表明:节点在1.3倍设计荷载作用下保持弹性工作状态,具有较高的安全度,可以满足设计承载力需求,有限元分析较好地模拟了加载试验过程,有效弥补了节点试验测点较少的不足,可用于节点受力性能的全面评估。另外,选取较小的主管径厚比和内置加劲板可提高其径向刚度,确保节点破坏时主管处于弹性工作状态;支管加劲板对支管的弹性刚度没有影响,对其承载能力的影响不大,但可以减小支管的径向变形,局部改变支管的应力分布。该节点的构造设计是合理的,其在设计荷载作用下的受力是安全的。  相似文献   

13.
首先对带肋异形截面K形相贯焊接节点进行缩尺模型试验,分析了节点在复杂受力工况下的应变发展过程,随后建立并验证了带肋异形K形相贯节点有限元模型。通过有限元计算对比分析了带肋节点和不带肋节点的应力分布、破坏模式和极限承载力,最后计算比较了节点在不同内外加劲厚度条件下的极限承载力。结果表明内、外加劲能够有效降低节点相贯区域应力,带肋节点相贯区达到材料断裂应变而发生破坏,带肋节点的极限承载力为不带肋节点的1.8倍,增大加劲板的厚度也可一定程度增大节点极限承载力。  相似文献   

14.
赵俊钊  陈颖 《工业建筑》2019,(1):163-169
为分析开洞T形圆钢管相贯节点极限承载力,确定开洞率对节点极限承载力的影响规律,并给出T形圆钢管相贯节点的开洞设计建议。首先对支管轴心受力T形圆钢管相贯节点的受力机理进行了阐述,建立了参数化节点有限元计算模型,参数包括:支主管管径比、支主管管壁厚度比、开洞率和支管受力状态,并对160个支管轴心受力节点模型进行了非线性有限元分析。结果表明:开洞对支管轴心受拉节点的影响大于支管轴心受压节点;其他条件不变时,支管壁厚越大,极限承载力也越大;满足一定条件时,支管轴心受压T形圆钢管相贯节点开洞率可取到0. 5,而支管轴心受拉节点开洞率只可取到0. 25。  相似文献   

15.
通过对四个设置不同构造的节点试件进行低周反复试验,观察PEC柱弱轴-H型钢梁节点域设置竖向加劲肋后抗震性能的改变和节点域不设加劲肋单纯增加盖板厚度或端板厚度的抗震效果。结果表明,PEC柱弱轴-H型钢梁节点域设置竖向加劲肋后,其破坏形式和节点域关键部位应变分析结果理想,节点的承载力、延性、刚度和耗能能力明显提高,更好地满足了"强节点"的抗震设计要求。在不设加劲肋的情况下,单纯增加盖板厚度节点的破坏形式和节点域关键部位应变分析结果理想,节点的承载力提高,但延性和耗能能力会降低;单纯增加端板厚度节点的破坏形式没有发生改变,节点域关键部位应变分析不理想,节点承载力没有明显改变,延性和耗能能力会降低。  相似文献   

16.
以上海旗忠网球中心可开闭屋盖支座节点为工程背景,探讨了由7根支管和1根主管焊接而成的复杂空间多支管节点静力强度。首先进行了两个1∶3的缩尺模型节点静力对比试验,一个节点的主管中不设置加劲板,另一个节点在主管内设置了环向加劲板。试验研究了节点的破坏模式、应力分布、塑性发展、承载能力,观察了加劲板对节点性能的影响。其次,应用有限元方法对两个所试验的模型节点受力性能进行了数值分析,将计算结果与试验结果作了比较,表明有限元数值分析有效可靠。最后,讨论了增强复杂管节点强度的措施,进行了环向加劲板构造参数的有限元分析。研究表明主管径大壁薄、多支管的空间圆管节点在支管有拉有压的情况下很容易发生主管屈服破坏,设计时建议在主管内布置环向加劲板来保证节点刚度和强度,须根据支管轴力大小、拉压性质、支管与主管相交位置等因素来精心设计加劲板的位置和数量。加劲板的厚度不宜小于主管的壁厚,加劲板中心开孔的直径不宜大于0.5倍的主管直径。  相似文献   

17.
剪力键节点域是保证钢空腹夹层板空间协同工作的关键节点。为研究加劲板对剪力键节点域静力特性的影响,基于通用有限元分析软件,建立4组考虑材料非线性的节点域平面受剪状态数值模型。分析了设置加劲板对节点域受力及变形状态的影响,并选取加劲板宽度、方钢管厚度、剪力键高度作为变量进行参数化分析。分析结果表明,加劲板可以有效降低节点域方钢管的应力,保证节点域整体变形的特性,避免出现反弯点。根据不同因素的影响程度,发现加劲板的宽度对节点域的静力性能影响最大,提出了加劲板设置的合理尺寸范围的建议值,分析结论可为类似工程应用提供参考。  相似文献   

18.
本文对部分包裹混凝土柱与型钢梁外伸端板连接节点的抗震性能进行了试验研究。共设计了4个构造不同的梁柱节点,通过施加低周反复水平荷载,研究该节点各连接组件板域的应变分布及破坏模式,分析端板厚度、加劲板、背垫板对节点承载力、刚度、延性及耗能性能的影响。  相似文献   

19.
为研究钢管混凝土加劲环管板节点在轴向拉力作用下的受力性能,开展了3个节点试件的单调加载试验,分别得到了管板节点加强前后的荷载-位移曲线和破坏模式。试验结果表明:SPR节点在单调荷载作用下主管和加劲环发生局部屈曲,表现为延性破坏;CFT节点在荷载作用下主管壁发生剪切破坏,荷载-位移曲线没有明显的屈服段,表现为脆性破坏;CFTR节点在荷载作用下,连接板处加劲环发生剪切破坏,同时加劲环局部V形屈曲;加劲环能够明显提高管板节点的承载力,同时改善节点的塑性性能;相较于主管外设加劲环,主管内部填充混凝土具有更好的承载力提升效果,节点的刚度变大但塑性性能变差;钢管混凝土加劲环管板节点具有加劲环和混凝土的双重特性,在显著提高节点承载力的同时保障节点塑性性能。在264个有限元模型参数分析的基础上,得到了双加劲环管板节点受拉承载力的计算方法,给出了加劲环厚度和宽度组合的设计建议。基于极限分析的塑性铰线方法,推导出SP节点和SPR节点极限承载力的理论计算模型,计算结果与有限元结果吻合较好。  相似文献   

20.
采用计算机模拟仿真方法,对空间钢管-板XX型节点进行参数分析。研究了不同的支管加载比例、几何参数和主管应力比对空间钢管-板XX型节点的破坏模式和极限承载力的影响。结果表明:节点板间的夹角不同时,支管加载比例对节点极限承载力的影响规律有很大差异;主管应力比无论正负均会引起节点极限承载力的降低。在此基础上,通过对数值结果的回归分析,考虑了节点板间的夹角和支管加载比例的空间影响效应,提出适用于该类节点的极限承载力公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号