共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study 总被引:12,自引:0,他引:12
Venkata Mohan S Chandrasekhar Rao N Karthikeyan J 《Journal of hazardous materials》2002,90(2):189-204
This communication presents the results pertaining to the investigation conducted on color removal of trisazo direct dye, C.I.Direct Brown 1:1 by adsorption onto coal based sorbents viz. charfines, lignite coal, bituminous coal and comparing results with activated carbon (Filtrasorb-400). The kinetic sorption data indicated the sorption capacity of the different coal based sorbents. The sorption interaction of direct dye on to coal based sorbents obeys first-order irreversible rate equation and activated carbon fits with the first-order reversible rate equation. Intraparticle diffusion studies revealed the dye sorption interaction was complex and intraparticle diffusion was not only the rate limiting step. Isothermal data fit well with the rearranged Langmuir adsorption model. R(L) factor revealed the favorable nature of the isotherm of the dye-coal system. Neutral solution pH yielded maximum dye color removal. Desorption and interruption studies further indicated that the coal based sorbents facilitated chemisorption in the process of dye sorption while, activated carbon resulted in physisorption interaction. 相似文献
2.
The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50相似文献
3.
Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study 总被引:2,自引:0,他引:2
Venkata Mohan S Shailaja S Rama Krishna M Sarma PN 《Journal of hazardous materials》2007,146(1-2):278-282
Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH. 相似文献
4.
Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies 总被引:4,自引:0,他引:4
Immobilization of heavy metals from contaminated environments is an emerging field of interest from both resource conservation and environmental remediation points of view. This study investigated the feasibility of using phosphatic clay, a waste by-product of the phosphate mining industry, as an effective sorbent for Pb from aqueous effluents. The major parameters controlling aqueous Pb removal, viz. initial metal ion concentrations, solution pH, sorbent amounts, ionic strength and presence of both inorganic and organic ligands were evaluated using batch experiments. Results demonstrated that aqueous Pb removal efficiency of phosphatic clay is controlled mainly by dissolution of phosphatic clay associated fluoroapatite [Ca(10)(PO(4))(5)CaCO(3)(F,Cl,OH)(2)], followed by subsequent precipitation of geochemically stable pyromorphite [Pb(10)(PO(4))(6)(F,Cl,OH)(2)], which was confirmed by both X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis. Lead removal efficiency of phosphatic clay increased with increasing pH, sorbent amount and decreasing ionic strength. It also depends on the nature of complexing ligands. Formation of insoluble calcium oxalate and lead oxalate in the presence of oxalic acid explained high uptake of Pb by phosphatic clay from aqueous solution. However, Pb sorption kinetics onto phosphatic clay were biphasic, with initially fast reactions followed by slow and continuous Pb removal reactions. The slow reactions may include surface sorption, co-precipitation and diffusion. The exceptional capability of phosphatic clay to remove aqueous Pb demonstrated its potential as a cost effective way to remediate Pb-contaminated water, soils and sediments. 相似文献
5.
Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics 总被引:3,自引:0,他引:3
This study consists of producing high surface area activated carbon from tobacco residues by chemical activation and its behavior of phenol removal from aqueous solutions. K(2)CO(3) and KOH were used as chemical activation agents and three impregnation ratios (50, 75 and 100 wt.%) were applied on biomass. Maximum BET surface areas of activated carbons were obtained from impregnation with 75 wt.% of K(2)CO(3) and 75 wt.% of KOH as 1635 and 1474 m(2)/g, respectively. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage, initial phenol concentration, contact time and temperature of solution for phenol removal. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. According to the experimental results, activated carbon prepared from tobacco residue seems to be an effective, low-cost and alternative adsorbent precursor for the removal of phenol from aqueous solutions. 相似文献
6.
Onur Sözüdoğru Baybars Ali Fil Recep Boncukcuoğlu Sinan Kul 《Particulate Science and Technology》2013,31(1):103-111
ABSTRACTThe removal of Basic Yellow 2 (BY2), a cationic dye, from aqueous solution by using montmorillonite as adsorbent was studied in batch experiments. The effect of pH, agitation speed, adsorbent dosage, initial dye concentration ionic strength, and temperature on the removal of BY2 was also investigated. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms were applied to fit the adsorption data of BY2 dye. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The maximum monolayer adsorption capacity was calculated as 434.196 mg g?1 from the Langmuir isotherm model. The adsorption data was fitted to both the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models, and the calculated values of the amount adsorbed at equilibrium (qe) by pseudo-second-order equations were found to be in good agreement with the experimental values. The thermodynamic factors were also evaluated. The entropy change (ΔS*) was negative, suggesting that the adsorption process decreases in entropy and enthalpy change (ΔH*) was positive which indicates endothermic nature. The positive ΔG* value confirms the un-spontaneity of the process. In addition, a semiempirical model was calculated from kinetic data. 相似文献
7.
Adsorptive removal of methylene blue by tea waste 总被引:3,自引:0,他引:3
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution. 相似文献
8.
Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies 总被引:1,自引:1,他引:1
Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased. 相似文献
9.
10.
Smectite clay samples from the Amazon region, Brazil, were pillarized by intercalating the species obtained from the chemical reactions: (i) AlCl3·6H2O/NaOH, (ii) titanium ethoxide in hydrochloric acid and (iii) direct use of ZrOCl2·8H2O solution. The natural matrices and the pillaring solutions were maintained under vigorous stirring at 298 K for 3 h and then subjected to calcination at temperatures of 723 and 873 K. Natural and pillared matrices were characterized by XRD, FTIR, TG–DTG and nitrogen adsorption–desorption isotherms. The resulting materials were used for zinc adsorption from aqueous solution at room temperature. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data and the Freundlich model is limited for higher concentrations. The pillaring process increases the thermal stability, the basal spacing of the natural clay sample (A1) from 1.55 to 2.06 nm and the surface area from 44.30 to 223.73 m2 g−1. Kinetic studies demonstrated an equilibrium time of 180 min for zinc adsorption on the pillared matrices. Pseudo-first-order, Lagergren pseudo-second-order and Elovich equations demonstrated a better agreement with second-order kinetics was obtained with K2 = 4.17–10.43 × 10−3 g mg−1 min−1 for the A1 sample. 相似文献
11.
Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon. 相似文献
12.
Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process. 相似文献
13.
Baghel A Singh B Pandey P Dhaked RK Gupta AK Ganeshan K Sekhar K 《Journal of hazardous materials》2006,137(1):396-400
Adsorptive removal of water poisons such as Pb(II), Cu(II), Mn(II), Hg(II), CN(-), microbes, nerve and blister agents (concentration range from 100 to 1000 mg/L) were studied by using adsorbents such as active carbon, impregnated carbon and bentonite loaded fabric strip. Removal of water poisons (99.5%) could be achieved with an optimum stirring time of 5-15 min and weight of adsorbent of 0.8-8.0 g/100mL contaminated water, respectively. However, 85% bentonite loading was found to be most effective for Pb(II) removal. Effect of contaminants concentration was also studied. 相似文献
14.
Nurul Solehah Mohd Zaini I. Wuled Lenggoro Mohd Nazli Naim Norihiro Yoshida Hasfalina Che Man Noor Fitrah Abu Bakar Siti Wahidah Puasa 《Advanced Powder Technology》2021,32(6):1833-1843
The effectiveness of ammonium (NH4+) adsorption was investigated, using spray-dried, pH-treated bentonite, and kaolin as adsorbents. Each powder's adsorption capacity towards NH4+ was examined after up to 120 min of sample exposure, and results were compared. The zeta potential values for bentonite samples were between ?1.1 and ?19.4 mV, while for kaolin samples, they were between ?35.7 and ?40.9 mV (pH range examined was 2–10). The adsorption isotherm for bentonite showed a fit with the Langmuir model. The pH 10-treated bentonite and as-received bentonite (dispersed as pH 10 in distilled water) showed the highest adsorption capacity towards NH4+. Meanwhile, for kaolin, the adsorption capacity was low and observed only at low NH4+ concentration (100 mg/L and 200 mg/L), with pH 10-treated kaolin showed the highest adsorption capacity. 相似文献
15.
Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite 总被引:1,自引:0,他引:1
This study explored the feasibility of utilizing raw and calcinated dolomite under CO2 atmosphere for phosphate removal in laboratory experiments. The experimental work emphasized the evaluation of phosphate adsorption characteristics of this adsorbent material. Studies were conducted to delineate the effect of contact time, initial phosphate concentration, temperature, pH, stirring speed, adsorbent dose and calcination temperature. Phosphate removal decreased with increasing temperature and slightly increased with increasing of pH. The observed decrease in the adsorption capacity with increase of the temperature from 20 to 40 and to 60 degrees C indicates that the low temperatures favor the phosphate removal by adsorption onto dolomite. Phosphate removal was seen to decrease with increasing calcination temperature due to the structural changes occurring in the structure and pore size distribution of dolomite samples during calcination. The experimental data obtained were applied to the Freundlich, Langmuir, BET, Halsey, Harkins-Jura, Smith and Henderson isotherm equations to test the fit of these equations to raw and calcinated dolomite samples. By considering the experimental results and adsorption models applied in this study, it can be concluded that adsorption of phosphate occurs predominantly through physical interactions, and the dolomite sample has a heteroporous structure. The large values of the constants for Henderson equation and the high value of y(m) obtained from BET equation indicate the microporous structure is more stable in raw and calcinated dolomite samples. 相似文献
16.
This study discusses about the biosorption of Cr(VI) ion from aqueous solution using ultrasonic assisted Spirulina platensis (UASP). The prepared UASP biosorbent was characterised by Fourier transform infrared spectroscopy, X‐ray diffraction, Brunauer–Emmet–Teller, scanning electron spectroscopy and energy dispersive X‐ray and thermogravimetric analyses. The optimum condition for the maximum removal of Cr(VI) ions for an initial concentration of 50 mg/l by UASP was measured as: adsorbent dose of 1 g/l, pH of 3.0, contact time of 30 min and temperature of 303 K. Adsorption isotherm, kinetics and thermodynamic parameters were calculated. Freundlich model provided the best results for the removal of Cr(VI) ions by UASP. The adsorption kinetics of Cr(VI) ions onto UASP showed that the pseudo‐first‐order model was well in line with the experimental data. In the thermodynamic study, the parameters like Gibb''s free energy, enthalpy and entropy changes were evaluated. This result explains that the adsorption of Cr(VI) ions onto the UASP was exothermic and spontaneous in nature. Desorption of the biosorbent was done using different desorbing agents in which NaOH gave the best result. The prepared material showed higher affinity for the removal of Cr(VI) ions and this may be an alternative material to the existing commercial adsorbents.Inspec keywords: adsorption, ultrasonic applications, Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, thermal analysis, chromium, free energy, enthalpy, entropy, desorption, water treatment, water pollution, biological techniques, microorganismsOther keywords: Cr4+ , entropy changes, enthalpy changes, Gibb''s free energy, pseudofirst‐order model, Freundlich model, thermogravimetric analyses, energy dispersive X‐ray, scanning electron spectroscopy, Brunauer‐Emmet‐Teller, X‐ray diffraction, Fourier transform infrared spectroscopy, UASP biosorbent, ultrasonic assisted Spirulina platensis, aqueous solution, chromium ion biosorption, thermodynamic prediction, kinetic prediction, equilibrium prediction, parameter optimisation, chromium ion removal, Spirulina platensis alga, adsorption capacity 相似文献
17.
18.
Mostafa R. Abukhadra Mohamed Rabia Mohamed Shaban Francis Verpoort 《Advanced Powder Technology》2018,29(10):2501-2511
Heulandite/polyaniline (HU/PANI) composite was prepared by mechanical mixing from natural heulandite and synthesized polyaniline. HU/PANI was characterized by XRD, SEM, TEM, FT-IR, and UV–Vis spectroscopy. The product is of polycrystalline nature with an average crystallite size of 25.7?nm and optical band gap of 1.69?eV. HU/PANI shows higher efficiency in the removal of light green SF dye than natural HU or PANI in the dark and under artificial illumination. The equilibrium time was attained after 360 and 480?min in the dark and under illumination, respectively. The results fitted well with pseudo second order and Elovich kinetic models. The adsorption isotherm in the dark fitted well with Langmuir isotherm model and the calculated qmax was 44.6?mg/g. Using illumination, the data fitted better with the Freundlich and Temkin model than with the Langmuir model. Based on response surface analysis, the predicted conditions for maximum removal of light green SF dye in the dark (70.9%) were 5.5?mg/L, 24?mg, 3, and 430?min for dye concentration, HU/PANI dose, pH, and contact time, respectively. Whereas, under light illumination (97%) at operating conditions of 15?mg/L, 15?mg, 3, and 589?min, respectively. The composite also shows high efficiencies in the removal of other types of acidic and basic dyes. 相似文献
19.
Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies 总被引:2,自引:0,他引:2
This study describes the advantages of nano-hydroxyapatite (n-HAp), a cost effective sorbent for fluoride removal. n-HAp possesses a maximum defluoridation capacity [DC] of 1845 mg F−/kg which is comparable with that of activated alumina, a defluoridation agent commonly used in the indigenous defluoridation technology. A new mechanism of fluoride removal by n-HAp was proposed in which it is established that this material removes fluoride by both ion-exchange and adsorption process. The n-HAp and fluoride-sorbed n-HAp were characterized using XRD, FTIR and TEM studies. The fluoride sorption was reasonably explained with Langmuir, Freundlich and Redlich–Peterson isotherms. Thermodynamic parameters such as ΔG°, ΔH°, ΔS° and Ea were calculated in order to understand the nature of sorption process. The sorption process was found to be controlled by pseudo-second-order and pore diffusion models. Field studies were carried out with the fluoride containing water sample collected from a nearby fluoride endemic area in order to test the suitability of n-HAp material as a defluoridating agent at field condition. 相似文献
20.
The present paper is aimed to investigate and develop cheap adsorption methods for colour removal from wastewater using waste material de-oiled mustard as adsorbent. De-oiled mustard, a biosorbent, was successfully utilized for removing a water-soluble xanthene dye, Erythrosine from wastewater. Kinetic studies of adsorption of Erythrosine at de-oiled mustard were carried out at 30 degrees C, using aqueous solutions with 5 x 10(-5)M concentration of Erythrosine. The adsorption process followed a pseudo-first order model. The equilibrium process can be well described by both Freundlich and Langmuir models, at 30, 40 and 50 degrees C. Free energy of adsorption (DeltaG degrees ), enthalpy (DeltaH degrees ), and entropy (DeltaS degrees ) changes were calculated to predict the nature of adsorption. The estimated values for DeltaG degrees were -12.81 x 10(3) and -12.57 x 10(3) over activated carbon and activated de-oiled mustard at 203 K (30 degrees C), indicate toward a spontaneous process. The positive value for DeltaH degrees indicates that the adsorption of Erythrosine dye to de-oiled mustard is an endothermic process. 相似文献