首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of cotranslational disulfide bond formation in the folding pathway of the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus was explored. Electrophoresis of pulse-labeled HN protein in the presence or absence of reducing agent showed that, characteristic of many glycoproteins, the nascent HN protein contains intramolecular disulfide bonds. As reported by Braakman et al. (EMBO J. 11, 1717-1722, 1992), incubation of cells in dithiothreitol (DTT) blocked the formation of these bonds. Removal of DTT after a pulse-label allowed for the subsequent formation of intramolecular disulfide bonds and folding of the molecule as assayed by the appearance of conformationally sensitive antigenic sites and by the formation of disulfide-linked dimers. However, the t1/2 for the formation of a conformationally sensitive antigenic site after synthesis in the presence of DTT was over twice that of the control. Furthermore, the order of appearance of the antigenic sites was different from the control, suggesting that inhibition of cotranslational disulfide bond formation altered the folding pathway of the protein. Similar results were obtained in a cell-free system containing membranes. The HN protein forced to form intramolecular disulfide bonds posttranslationally had no detectable neuraminidase or cell attachment activity, suggesting that the protein had an abnormal conformation.  相似文献   

2.
In this study we have used cultured muscle cells to investigate the role of disulfide bond formation in the sequence of molecular events leading to nicotinic acetylcholine receptor (AChR) assembly and surface expression. We have observed that disulfide bond formation in newly synthesized AChR alpha-subunits occurs 5-20 min after translation and that this modification can be blocked by dithiothreitol (DTT), a membrane-permeant thiol-reducing agent. DTT treatment was found to arrest AChR alpha-subunit conformational maturation, assembly, and appearance on the cell surface, showing that these events are dependent on prior formation of disulfide bonds. Subunits prevented from maturation by the reducing agent do not irreversibly misfold or aggregate, since upon removal of DTT, AChR alpha-subunits undergo formation of disulfide bonds and resume folding, oligomerization, and surface expression. We have previously found that nascent alpha-subunits form transient complexes with the molecular chaperone calnexin immediately after subunit synthesis (Gelman, M.S., Chang, W., Thomas, D. Y., Bergeron, J. J. M., and Prives, J. M. (1995) J. Biol. Chem. 270, 15085-15092) and have now observed that both the formation and the subsequent dissociation of these complexes are unaffected by DTT treatment. Thus, alpha-subunits appear to dissociate from calnexin independently of their undergoing disulfide bond formation and achieving conformational maturation. This finding together with the absence of irreversible misfolding of DTT-arrested alpha-subunits suggests that calnexin may act to prevent misfolding by aiding in the initial folding events and is not an essential participant in the late stages of alpha-subunit maturation.  相似文献   

3.
The cyanide-resistant alternative oxidase of plant mitochondria is a homodimeric protein whose activity can be regulated by a redox-sensitive intersubunit sulfhydryl/disulfide system and by alpha-keto acids. After determining that the Arabidopsis alternative oxidase possesses the redox-sensitive sulfhydryl/disulfide system, site-directed mutagenesis of an Arabidopsis cDNA clone was used to individually change the two conserved Cys residues, Cys-128 and Cys-78, to Ala. Using diamide oxidation and chemical cross-linking of the protein expressed in Escherichia coli, Cys-78 was shown to be: 1) the Cys residue involved in the sulfhydryl/disulfide system; and 2) not required for subunit dimerization. The C128A mutant was stimulated by pyruvate, while the C78A mutant protein had little activity and displayed no stimulation by pyruvate. Mutating Cys-78 to Glu produced an active enzyme which was insensitive to pyruvate, consistent with alpha-keto acid activation occurring through a thiohemiacetal. These results indicate that Cys-78 serves as both the regulatory sulfhydryl/disulfide and the site of activation by alpha-keto acids. In light of these results, the previously observed effects of sulfhydryl reagents on the alternative oxidase of isolated soybean mitochondria were re-examined and were found to be in agreement with a single sulfhydryl residue being the site both of alpha-keto acid activation and of the regulatory sulfhydryl/disulfide system.  相似文献   

4.
The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase activity is activated by a incubation with ADP-glucose and dithiothreitol or by ATP, glucose- 1-phosphate, Ca2+, and dithiothreitol. The activation was accompanied by the appearance of new sulfhydryl groups as determined with 5, 5'-dithiobis(2-nitrobenzoic acid). By analyzing the activated and nonactivated enzymes on SDS-polyacrylamide gel electrophoresis under nonreducing conditions, it was found that an intermolecular disulfide bridge between the small subunits of the potato tuber enzyme was reduced during the activation. Further experiments showed that the activation was mediated via a slow reduction and subsequent rapid conformational change induced by ADP-glucose. The activation process could be reversed by oxidation with 5, 5'-dithiobis(2-nitrobenzoic acid). Incubation with ADP-glucose and dithiothreitol could reactivate the oxidized enzyme. Chemical modification experiments with [14C]iodoacetic acid and 4-vinylpyridine determined that the intermolecular disulfide bridge was located between Cys12 of the small subunits of the potato tuber enzyme. Mutation of Cys12 in the small subunit into either Ala or Ser eliminated the requirement of DTT on the activation and prevented the formation of the intermolecular disulfide of the potato tuber enzyme. The mutants had instantaneous activation rates as the wild-type in the reduced state. A two-step activation model is proposed.  相似文献   

5.
Pyruvate transport into rat liver mitochondria is inhibited by a variety of thiol reagents. alpha-Cyanocinnamate and its derivates, potent and reversible inhibitors of pyruvate transport, react reversibly with mercaptoethanol and cysteine to form addition products. It is concluded that these inhibitors react with an essential thiol group on the pyruvate carrier.  相似文献   

6.
In isolated pea (Pisum sativum L.) mitochondria incorporation of 35S-methionine into newly synthesised proteins was influenced by the presence of site-specific inhibitors of the respiratory electron-transport chain. These effects were not produced by changes in the rate of respiratory electron transport itself nor by changes in ATP concentration. Protein synthesis was inhibited by inhibitors of ubiquinone reduction but not by inhibitors of ubiquinol oxidation. By the use of additional inhibitors at specific sites of the respiratory chain, different oxidation-reduction states were obtained for the different complexes in the electron-transport chain. It was found that electron transport through succinate:ubiquinone oxidoreductase (respiratory complex II) was specifically required for protein synthesis, even when all the other conditions for protein synthesis were satisfied. We suggest that a subunit of complex II, or a component closely associated with complex II, is involved in a regulatory system that couples electron transport to protein synthesis.  相似文献   

7.
A novel class of CMV protease inhibitors based on a benzothiopyran-S,S-dioxide nucleus has been discovered. Enzyme kinetic data supports a reversible mode of inhibition for a representative member of this class, 2-(3-pyridyl-N-oxide)benzothiopyran-4-one-S,S-dioxide, 1. Experiments in the presence and absence of the disulfide reducing agent DTT suggest that the inhibition by 1 is not due to oxidative inactivation of the enzyme. Also presented are results of some SAR studies of the benzothiopyranone ring system.  相似文献   

8.
Bovine lens aldose reductase (ALR2) is inactivated by copper ion [Cu(II)] through an oxygen-independent oxidative modification process. A stoichiometry of 2 equiv of Cu(II)/enzyme mol is required to induce inactivation. While metal chelators such as EDTA or o-phenantroline prevent but do not reverse the ALR2 inactivation, DTT allows the enzyme activity to be rescued by inducing the recovery of the native enzyme form. The inactive enzyme form is characterized by the presence of 2 equiv of bound copper, at least one of which present as Cu(I), and by the presence of two lesser equivalents, with respect to the native enzyme, of reduced thiol residues. Data are presented which indicate that the Cu-induced protein modification responsible for the inactivation of ALR2 is the generation on the enzyme of an intramolecular disulfide bond. GSH significantly interferes with the Cu-dependent inactivation of ALR2 and induces, through its oxidation to GSSG, the generation of an enzyme form linked to a glutathionyl residue by a disulfide bond.  相似文献   

9.
DsbA, the disulfide bond catalyst of Escherichia coli, is a periplasmic protein having a thioredoxin-like Cys-30-Xaa-Xaa-Cys-33 motif. The Cys-30-Cys-33 disulfide is donated to a pair of cysteines on the target proteins. Although DsbA, having high oxidizing potential, is prone to reduction, it is maintained essentially all oxidized in vivo. DsbB, an integral membrane protein having two pairs of essential cysteines, reoxidizes DsbA that has been reduced upon functioning. It is not known, however, what might provide the overall oxidizing power to the DsbA-DsbB disulfide bond formation system. We now report that E. coli mutants defective in the hemA gene or in the ubiA-menA genes markedly accumulate the reduced form of DsbA during growth under the conditions of protoheme deprivation as well as ubiquinone/menaquinone deprivation. Disulfide bond formation of beta-lactamase was impaired under these conditions. Intracellular state of DsbB was found to be affected by deprivation of quinones, such that it accumulates first as a reduced form and then as a form of a disulfide-linked complex with DsbA. This is followed by reduction of the bulk of DsbA molecules. These results suggest that the respiratory electron transfer chain participates in the oxidation of DsbA, by acting primarily on DsbB. It is remarkable that a cellular catalyst of protein folding is connected to the respiratory chain.  相似文献   

10.
3-Oxobutylsulfoxyl-CoA has been produced by oxidation of S-3-oxobutyl-CoA, the thioether analog of acetoacetyl-CoA. Avian hydroxymethylglutaryl-CoA (HMG-CoA) synthase is inactivated by oxobutylsulfoxyl-CoA in a time-dependent fashion. Protection against inactivation is afforded by the substrate, acetyl-CoA, suggesting that inactivation involves modification of the enzyme's active site. Pretreatment of HMG-CoA synthase with the inactivator blocks the enzyme's ability to form Michaelis and acetyl-S-enzyme intermediates, supporting the hypothesis that modification is active-site directed. Incubation of enzyme with oxobutylsulfoxyl-[32P]CoA followed by precipitation with trichloroacetic acid indicates that inactivation correlates with stoichiometric formation of a covalent adduct between enzyme and a portion of the inactivator that includes the CoA nucleotide. The observation of reagent partitioning suggests that HMG-CoA synthase catalyzes conversion of oxobutylsulfoxyl-CoA into a reactive species that modifies the protein. Treatment of inactivated enzyme with DTT or other mercaptans restores enzyme activity and reverses the covalent modification with release of CoASH. Oxobutylsulfoxyl-CoA inactivates beta-ketothiolase and HMG-CoA lyase in a process that is also reversed by DTT. These three enzymes all contain active site cysteines, suggesting that inactivation results from disulfide formation between a cysteine and the CoA moiety of the inhibitor. The data are consistent with the hypothesis that enzymatic cleavage of oxobutylsulfoxyl-CoA results in the transient formation of a sulfenic acid derivative of CoA which subsequently reacts to form a stable disulfide linkage to protein.  相似文献   

11.
1. Pyruvate dehydrogenase complex was isolated from pigeon breast muscle involving steps of isoelectric precipitation, poly(ethyleneglycol) fractionation and separation on a glycerine gradient in the ultracentrifuge. 2. Arsenite, a potent inhibitor of the dihydrolipoyl transcetylase, did not affect the formation of acetoin from acetaldehyde, indicating that the pyruvate dehydrogenase component was operative in this reaction. 3. Production of acetoin by the pyruvate dehydrogenase complex is subject to regulation by phosphorylation and dephosphorylation, the dephosphorylated form only being active. 4. The inhibition by acetaldehyde of the pyruvate dehydrogenase complex could be partly explained by the formation of acetoin as an alternative reaction.  相似文献   

12.
It has been previously demonstrated that the vacuolar H+-ATPase (V-ATPase) of clathrin-coated vesicles is reversibly inhibited by disulfide bond formation between conserved cysteine residues at the catalytic site on the A subunit (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13224-13230). Proton transport and ATPase activity of the purified, reconstituted V-ATPase are now shown to be inhibited by the nitric oxide-generating reagent S-nitrosoglutathione (SNG). The K0.5 for inhibition by SNG following incubation for 30 min at 37 degreesC is 200-400 microM. As with disulfide bond formation at the catalytic site, inhibition by SNG is reversed upon treatment with 100 mM dithiothreitol and is partially protected in the presence of ATP. Also as with disulfide bond formation, treatment of the V-ATPase with SNG protects activity from subsequent inactivation by N-ethylmaleimide, as demonstrated by restoration of activity by dithiothreitol following sequential treatment of the V-ATPase with SNG and N-ethylmaleimide. Moreover, inhibition by SNG is readily reversed by dithiothreitol but not by the reduced form of glutathione, suggesting that the disulfide bond formed at the catalytic site of the V-ATPase may not be immediately reduced under intracellular conditions. These results suggest that SNG inhibits the V-ATPase through disulfide bond formation between cysteine residues at the catalytic site and that nitric oxide (or nitrosothiols) might act as a negative regulator of V-ATPase activity in vivo.  相似文献   

13.
Modification of the gut flora by dietary means   总被引:1,自引:0,他引:1  
Elevated plasma lipoprotein(a) [Lp(a)] is an independent risk factor for several vascular diseases. Lp(a) particles are generated through the formation of a disulfide bond between Cys4057 of kringle IV type 9, (KIVt9), of the multikringle apolipoprotein(a) [apo(a)] and a cysteine in apoB-100 low-density lipoprotein (LDL). To better understand this interaction, we have expressed and purified KIVt9 from Escherichia coli as a His-Tag fusionprotein. Dithiothreitol (DTT)-treated purified KIVt9 migrated as a single approximately 17. 3-kDa band on SDS-PAGE gels. Without DTT, an additional band twice the molecular weight of KIVt9 was observed. The double-size band presumably resulted from dimerization of individual kringles, through their unpaired cysteine residues, since a mutation Cys4057 --> Ser ([Ser4057]KIVt9) abolished dimer formation. Using a gel-shift assay, we showed that KIVt9 could couple to 14-amino-acid apoB-100 synthetic peptides (apoB3732-3745 and apoB4319-4332) containing Cys3734 or Cys4326. Both of these apoB-100 cysteines have been reported to associate with apo(a) to generate Lp(a). In the presence of either apoB-100 peptide, KIVt9 was shifted to a higher molecular weight that was consistent with the covalent addition of a 1.2-kDa apoB-100 peptide. Identical apoB-100 peptides in which the cysteine residues were replaced by alanine ([Ala3734]apoB3732-3745 and [Ala4326]apoB4319-4332) had no effect in the gel-shift assay. Furthermore, [Ser4057]KIVt9 did not covalently interact with apoB3732-3745 or apoB4319-4332. These results indicated that KIVt9 couples to the Cys-apoB-100 peptides through a disulfide linkage. This system may be suitable for further investigating the apo(a)/apoB-100 coupling reaction and the structure of KIVt9 through X-ray crystallographic studies.  相似文献   

14.
The interaction between von Willebrand factor (vWF) A1 domain and platelet glycoprotein Ib alpha occurs in the presence of high shear stress or when vWF becomes immobilized onto a surface but not appreciably in the normal circulation. To investigate the structural properties regulating A1 domain function, we have used recombinant fragments prepared either in cyclic form with oxidized Cys509-Cys695 disulfide bond or reduced and alkylated. Interaction with glycoprotein Ibalpha was assessed by testing inhibition of monoclonal antibody LJ-Ib1 binding to platelets and inhibition of shear-induced platelet aggregation mediated by native vWF. Fragments exposed to pH between 2.5 and 3.5 adopted the molten globule conformation with loosened tertiary structure intermediate between native and completely unordered state. Maximal receptor binding activity was observed when fragments kept at acidic pH, particularly after reduction of the Cys509-Cys695 disulfide bond, were subjected to quick refolding by rapid pH increase. In contrast, slow refolding by incremental pH change over several hours resulted in at least 20-fold lower activity. A specific single point mutation (I546V) resulted in enhanced receptor binding, whereas another mutation (S561G) caused markedly reduced binding. These results provide experimental evidence that conformational transitions can modulate function of the vWF A1 domain in solution.  相似文献   

15.
Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca(2+)-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ ('Ca2+ cycling') is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability ('pore' formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

16.
Pyruvate ferredoxin oxidoreductase (POR) has been previously purified from two hyperthermophiles, the archaeon Pyrococcus furiosus (Pf, Topt = 100 degrees C) and the bacterium Thermotoga maritima (Tm, Topt = 80 degrees C). Each catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2 near the optimal growth temperature of the organism and are virtually inactive at 25 degrees C. Both PORs contain a thiamine pyrophosphate (TPP) cofactor and at least two [4Fe-4S] ferredoxin-type clusters. We have now shown, using EPR spectroscopy and metal analyses, that PfPOR also contains an unusual copper center that is not present in Tm POR. In addition, distinct catalytic intermediates were generated in both enzymes by the addition, separately and in combination, of the substrates pyruvate and CoASH, and these were examined by EPR spectroscopy. The addition of pyruvate to oxidized Pf POR produced an isotropic signal centered at g = 2.01, which was measurably broader in the presence of pyruvate-2(13)C. This signal, which was assigned to a (hydroxyethyl)thiamine pyrophosphate radical intermediate, was not observed in Tm POR under the same experimental conditions. Incubation of the oxidized enzymes with CoASH resulted in the partial reduction of the copper site in Pf POR and the partial reduction of a novel iron-sulfur center in Tm POR, which was not seen in the dithionite-reduced enzyme. The addition of both pyruvate and CoASH to the PORs in their oxidized states resulted in the reduction of the same iron-sulfur centers that are reduced by sodium dithionite.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Redox agents elicit a wide variety of effects on the ligand affinity and channel properties of ionotropic glutamate receptors and have been proposed as potential therapeutic agents for neuropathological processes. One such effect is the dithiothreitol (DTT)-induced increase in agonist affinity of certain ionotropic glutamate receptors (GluRs), presumably due to reduction of a disulfide bridge formed between cysteine residues conserved among all GluRs. Using biochemical techniques, this disulfide is shown to exist in the ligand-binding domain of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluRD, although GluRD homomeric receptors are not modulated by DTT. The disulfide is inaccessible to DTT, explaining the insensitivity of the intact receptor. Single mutants C260S and C315S show a 2-3-fold higher ligand affinity than wild-type, as observed for several intact GluRs, indicating that the affinity switch is completely contained within the ligand-binding domain. Also, mutants lacking the native disulfide show non-native oligomerization and dramatically reduced specific activity. These facts suggest that the disulfide bridge is required for the stability of the ligand-binding domain, explaining its conservation. A third cysteine residue in the ligand-binding domain exists as a free thiol, partially sequestered in a hydrophobic environment. These results provide a framework for interpreting a variety of GluR redox modulatory phenomena.  相似文献   

18.
Evidence for a reversible process resulting in stable activated and inactivated states of the mitochondrial branched chain alpha-keto acid dehydrogenase complex in isolated perfused rat heart is presented. The inactivation process is mediated by pyruvate infusion, while activation (up to 18-fold) is facilitated by branched chain alpha-keto acid substrates. The low activity state of the branched chain complex characteristic of freshly excised rat hearts could be maintained by infusion of either pyruvate or glucose. Activation of the complex in the perfused rat heart was achieved slowly by substrate-free perfusion, while rapid activation was accomplished by infusion of branched chain alpha-keto acids. The fully activated enzyme complex resulting from branched chain alpha-keto acid infusion subsequently could be inactivated maximally by infusion of pyruvate alone or intermediate degrees of inactivation could be produced by certain ratios of co-infused pyruvate and branched chain alpha-keto acid. alpha-Ketoisocaproate was an order of magnitude more effective than alpha-keto isovalerate either in preventing inactivation or in stimulating the opposing activation process when co-infused with pyruvate. The mitochondrial pyruvate transport inhibitor, alpha-cyanocinnamate, effectively prevented inactivation of the complex by infused pyruvate. Differential changes in the activation states of the branched chain alpha-keto acid dehydrogenase and pyruvate dehydrogenase complexes were evident when the two complexes were compared in apparently similar flux-inhibited (via octanoate infusion) and flux-stimulated (via dichloroacetate infusion) metabolic conditions. The differential effect of pyruvate concentration on the activity states of the two complexes was also well-defined. The results of the present study suggest distinct systems for the regulation of the activity of the two multienzyme complexes of interest. While our results argue neither for nor against an inactivation of the branched chain alpha-keto acid dehydrogenase complex by a protein kinase, the regulatory properties of such an intramitochondrial protein kinase may not be similar to the pyruvate dehydrogenase kinase. The mechanistic nature of the suggested novel regulatory system concerned with the pyruvate-mediated inactivation of the branched chain alpha-keto acid activation cannot be inferred at the present time.  相似文献   

19.
Complement activation generally does not occur on homologous cells. We observed C3 deposition on cultured human umbilical vein endothelial cells (HUVEC) when those which had died of apoptosis were treated with human serum. The C3 deposition on apoptotic HUVEC required Mg2+ but not Ca2+. In addition, the incubation of apoptotic HUVEC with purified C3, B, and D in the presence of Mg2+ resulted in C3 deposition. These results indicated that the C3 deposition on apoptotic HUVEC is mediated by the activation of the alternative complement pathway. C3 contains an intrachain thioester bond in the alpha chain (110 kDa) and upon activation to C3b, binds with membrane molecules by forming an ester or amide bond. Western blotting of reduced C3b-membrane molecule complexes, isolated from serum-treated apoptotic HUVEC by immunoprecipitation with anti-C3, revealed the covalent binding of C3b to several membrane molecules. Most of the C3b-membrane molecule complexes were cleaved by hydroxylamine, suggesting covalent binding via an ester bond. The molecular mass of the major alpha chain fragment released by hydroxylamine treatment was not 105 kDa but 68 kDa, which corresponds to the alpha 1 fragment of iC3b. These results indicate that most of the C3b on HUVEC was cleaved at its alpha' chain to yield iC3b, which consists of three disulfide-linked polypeptide chains and is a ligand of the complement receptor type 3 (CR3) of phagocytes. These results suggest that apoptotic HUVEC can activate the alternative pathway of the homologous complement and that the complement is related to the clearance of apoptotic cells by phagocytes.  相似文献   

20.
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号