首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of the electrical conductivity and Raman scattering measurements of CeO2 thin films obtained by a polymeric precursor spin-coating technique are presented. The electrical conductivity has been studied as a function of temperature and oxygen activity and correlated with the grain size. When compared with microcrystalline samples, nanocrystalline materials show enhanced electronic conductivity. The transition from extrinsic to intrinsic type of conductivity has been observed as the grain size decreases to <100 nm, which appears to be related to a decrease in the enthalpy of oxygen vacancy formation in CeO2. Raman spectroscopy has been used to analyze the crystalline quality as a function of grain size. A direct comparison has been made between the defect concentration calculated from coherence length and nonstoichiometry determined from electrical measurements.  相似文献   

2.
Electrical properties of CeO2 thin films of different Y2O3 dopant concentration as prepared earlier were studied using impedance spectroscopy. The ionic conductivities of the films were found to be dominated by grain boundaries of high conductivity as compared with that of the bulk ceramic of the same dopant concentration sintered at 1500°C. The film grain-boundary conductivities were investigated with regard to grain size, grain-boundary impurity segregation, space charge at grain boundaries, and grain-boundary microstructures. Because of the large grain boundary and surface area in thin films, the impurity concentration is insufficient to form a continuous highly resistive Si-rich glassy phase at grain boundaries, such that the resistivity associated with space-charge layers becomes important. The grain-boundary resistance may originate from oxygen-vacancy-trapping near grain boundaries from space-charge layers. High-resolution transmission electron microscopy coupled with a trans-boundary profile of electron energy loss spectroscopy gives strong credence to the space-charged layers. Since the conductivities of the films were observed to be independent of crystallographic texture, the interface misorientation contribution to the grain-boundary resistance is considered to be negligible with respect to those of the impurity layer and space-charge layers.  相似文献   

3.
The electrical properties of rare-earth oxide doped CeO2-ZrO2 ceramics are evaluated by impedance spectroscopy. Doping of the trivalent metal oxide decreases both the grain and grain-boundary resistivities of the CeO2-ZrO2 system. The grain and grain-boundary resistivities as well as the activation energy for conduction increase with the dopant cation radius. The grain conductivity is fairly constant for 2 mol% YO1.5-10 mol% CeO2-88 mol% ZrO2 samples sintered under different conditions, while lower grain-boundary resistivity is obtained for samples sintered at higher temperature for longer times. Possible mechanisms for the electrical behavior of the rare-earth oxide doped CeO2-ZrO2 ceramics are proposed and discussed.  相似文献   

4.
The results of Raman-scattering studies of nanocrystalline CeO2 and ZrO2:16% Y (YSZ) thin films are presented. The relationship between the lattice disorder and the form of the Raman spectra is discussed and correlated with the microstructure. It is shown that the Raman line shape results from phonon confinement and spatial correlation effects and yields information about the material nonstoichiometry level.  相似文献   

5.
CeO2 samples doped with 10, 1.0, and 0.1 mol% Y2O3 and undoped CeO2 samples of high purity were studied by impedance spectroscopy at temperatures <800°C and under various oxygen partial pressures. According to microstructural investigations by SEM and analytical STEM (equipped with EDXS), the grain boundaries were free of any second phase, providing direct grain-to-grain contacts. An amorphous siliceous phase was detected at only a few triple junctions, if at all; as a result, its contribution to the grain-boundary resistance was negligible. Nevertheless, the specific grain-boundary conductivities were still 2–7 orders of magnitude lower than the bulk conductivities, depending on dopant concentration, temperature, and oxygen partial pressure. The charge carrier transport across the grain boundaries occurred only through the grain-to-grain contacts, whose properties were then determined by the space-charge layer. The space-charge potential in acceptor-doped CeO2 was positive, causing the simultaneous depletion of oxygen vacancies and accumulation of electrons in the space-charge layer. The very low grain-boundary conductivities can be accounted for by the oxygen-vacancy depletion; the accumulation of electrons became evident in weakly doped and undoped CeO2 at high temperatures and under low oxygen partial pressures.  相似文献   

6.
The results of a study on the optical and electrical properties of (La0.8Sr0.2)0.9MnO3 (LSM) thin films obtained by a polymeric precursor spin coating technique were presented. This method allowed preparation of optical quality thin films at annealing temperatures around 800°C. Amorphous and crystalline LSM thin films were studied by optical and electrical conductivity measurements. The energy-dependent absorption coefficients for the crystalline specimen were calculated from optical spectra and extra absorption was observed in the range of 1.8–2.5 eV with the exchange-gap excitation behavior in the 3–5 eV range. In comparison to the amorphous specimens, the electrical conductivity of the nanocrystalline specimen increased two to three orders of magnitude with decreasing activation energy. The charge carrier absorption model suggested an increase of the carrier concentration in the nanocrystalline specimen which may be a reason for the change in the electrical conductivity.  相似文献   

7.
The oxygen storage capacity (OSC) of CeO2–ZrO2 solid solutions that were directly formed as nanocrystals by thermal hydrolysis of acidic aqueous solutions of (NH4)2Ce(NO3)6 and ZrOCl2 at 150°C increased from 94 μmol of O2/g for pure CeO2 to >400 μmol of O2/g for compositions of CeO2/ZrO2 with molar ratios (C/Z) from 74.1/25.9 to 41.7/58.3 (maximum value of 431 μmol O2/g was reached at the composition C/Z = 51.7/48.3) and then decreased with increased ZrO2 content in the solid solutions. As compared with pure CeO2, the CeO2–ZrO2 solid solutions that contained <84.8 mol% ZrO2 maintained high specific surface area and large pore volume with nanosized pores (pore size at maximum pore volume) <10 nm in diameter after heat treatment at 700°C.  相似文献   

8.
Dense, crack-free, and uniform La2Mo2− x W x O9 ( x =0, 0.1, and 0.2) nanocrystalline films were successfully synthesized on poly-alumina substrates via a modified sol–gel method, with inorganic salt of La(NO3)3·6H2O, (NH4)6Mo7O24·4H2O, and (NH4)6H2W12O24 as precursors. Pure La2Mo2O9 phase was confirmed by X-ray diffractometer when the annealing temperature was >500°C. The average grain size of the La2Mo2− x W x O9 films is in the range of 90–400 nm, depending upon the conditions of thermal treatment, and the thickness of films can reach 1 μm by repetitive spin-coating. The electrical conductivity increases with decreasing grain size and reaches 0.074 S/cm at 600°C in the film with a grain size of 90 nm, which is one order of magnitude higher than that in the corresponding bulk materials. W-doping can suppress the phase transition that occurs at 580°C in pure La2Mo2O9 and enhance the low-temperature ionic conductivity. Furthermore, the activation energy of conductivity in the nanocrystalline La2Mo2O9 films decreases to about 0.6 eV in comparison with 1.0 eV in the bulk ones, which implies that the grain resistance prevails in the total resistance, when grain size reduces to nanometer domain.  相似文献   

9.
Next-generation micro-solid oxide fuel cells for portable devices require nanocrystalline thin-film electrolytes in order to allow fuel cell fabrication on chips at a low operation temperature and with high power outputs. In this study, nanocrystalline gadolinia-doped ceria (Ce0.8Gd0.2O1.9− x ) thin-film electrolytes are fabricated and their electrical conductivity and thermodynamic stability are evaluated with respect to microstructure. Nanocrystalline gadolinia-doped ceria thin-film material (Ce0.8Gd0.2O1.9− x ) exhibits a larger amount of defects due to strain in the film than state-of-the-art microcrystalline bulk material. This strain in the film decreases the ionic conductivity of this ionic O2− conductor. The thermodynamic stability of a nanocrystalline ceria solid solution with 65 nm grain size is reduced compared with microcrystalline material with 3–5 μm grain size. Nanocrystalline spray-pyrolyzed and PLD Ce0.8Gd0.2O1.9− x thin films with average grain sizes larger than 70 nm show predominantly ionic conductivity for temperatures lower than 700°C, which is high enough to be potentially used as electrolytes in low to intermediate-temperature micro-solid oxide fuel cells.  相似文献   

10.
The phase and microstructure relationship of 12 mol% CeO2-stabilized ZrO2 ceramics prepared from coated powder was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersed X-ray spectroscopy (EDS). As compared with the sample prepared with co-precipitated method, which exhibited a similar grain size distribution, the EDS analysis revealed that the powder coating induced a wide distribution of CeO2 solubility, which decreases monotonically with the increase of grain size. This variation of stabilizer content from grain to grain rendered many large grains in the monoclinic phase. Stronger cerium segregation to grain boundaries was observed between large grains, which often form thin amorphous films there. The inhomogeneous CeO2 distribution keeps more tetragonal ZrO2 grains close to the phase boundary to facilitate the transforming toughness. Addition of an Al2O3 precursor in coated powders effectively raises the overall CeO2 stabilizer content in the grains and preserves more transformable tetragonal phase in the microstructure, which further enhanced the fracture toughness. The dependence of CeO2 solubility on grain size may be explained in a simple coating-controlled diffusion and growth process that deserves further investigation.  相似文献   

11.
SrO-doped CeO2 electrolyte has been evaluated in single-cell configuration under solid-oxide fuel cell operating conditions. Because of oxygen loss from the crystal lattice, the material experiences a macroscopic expansion of several percent at 1000°C. On extended cell operation, strontium precipitates-out at/near the anode, resulting in irreversible cell degradation in the case of SrO-doped CeO2. Precipitation and diffusion of SrO causes decreased ionic conductivity and may result in anode delamination. SrO precipitation is attributed to insolubility of the dopant in the reduced CeO2 phase. The diffusion of strontium seems to be related to the flux of oxygen through the sample, but an exact mechanism is unknown.  相似文献   

12.
Direct precipitation of nanometer-sized particles of ceria–zirconia (CeO2–ZrO2) solid solutions with cubic and tetragonal structures was successfully attained from acidic aqueous solutions of cerium(III) nitrate (Ce(NO3)3) and zirconium oxychloride (ZrOCl2) through the addition of ammonium peroxodisulfate ((NH4)2S2O8), because of promotion of the hydrolysis via the oxidation of Ce3+ ions, together with the simultaneous hydrolysis of ZrOCl2 under hydrothermal conditions. Ultrafine CeO2 particles also could be formed from relatively concentrated aqueous solutions of the same trivalent cerium salt in the presence of (NH4)2S2O8 via hydrolysis. The crystallite size and lattice strain of as-precipitated solid solutions varied, depending on the composition within the CeO2–ZrO2 system. Creation of a solid solution of ZrO2 into a fluorite-type CeO2 lattice clearly introduced lattice strain, as a consequence of the decreasing crystallite size. Both the direct precipitation process and the effectiveness of the presence of (NH4)2S2O8 for the synthesis of CeO2–ZrO2 solid solutions were discussed.  相似文献   

13.
Well-crystallized cerium(IV) oxide (CeO2) powders with nanosizes without agglomeration have been synthesized by a hydrothermal method in an acidic medium by using cerium hydroxide gel as a precursor. The relationship between the grain size, the morphology of the CeO2 crystallites, and the reaction conditions such as temperature, time, and acidity of the medium was studied. The experiments showed that with increasing reaction temperature and time, the CeO2 crystallites grew larger. The crystallites synthesized in an acidic hydrothermal medium were larger and had a more regular morphology than the ones synthesized in a neutral or alkaline medium when the reaction temperature and time were fixed. The CeO2 crystallites synthesized in an acidic medium were monodispersed; however, there was vigorous agglomeration among the grains synthesized in a neutral or alkaline medium. It was demonstrated that the hydrothermal treatment was an Ostwald ripening process and the acidity (pH) of the used hydrothermal medium played a key role in the dissolution of smaller grains. It is proposed that the dissolution process can control the kinetics of the growth of larger grains.  相似文献   

14.
The synthesis of ultrafine cerium dioxide (CeO2) powders via mechanochemical reaction and subsequent calcination was studied. Anhydrous CeCl3 and NaOH powders, along with NaCl diluent, were mechanically milled. A solid-state displacement reaction—CeCl3+ 3NaOH → Ce(OH)3+ 3NaCl—was induced during milling in a steady-state manner. Calcination of the as-milled powder in air at 500°C resulted in the formation of CeO2 nanoparticles in the NaCl matrix. A simple washing process to remove the NaCl yielded CeO2 particles ∼10 nm in size. The particle size was controlled in the range of ∼10–500 nm by changing the calcination temperature.  相似文献   

15.
CeO2 ultrafine particles were prepared by solid-state reactions at room temperature. These particles were found to have very fine particle sizes (∼3 nm) with a fluorite structure ( a = 5.42 Å). BET measurements showed that the surface area of the particles was 96.2 m2/g. The use of two different precursors was found to affect the size of the CeO2 particles. We discuss the effect of calcination at different temperatures on the morphology, size, and BET surface area of CeO2 particles. A salt byproduct coating prevented agglomeration of the CeO2 particles.  相似文献   

16.
Ferroelectric SrBi2(Ta,Nb)2O9 (SBTN) thin films were deposited on Pt (200 nm)/TiO x (40 nm)/SiO2 (100 nm)/Si substrates by metal-organic decomposition. The effects of bombardment from accelerated argon and oxygen ions on the properties of SBTN thin films were investigated. It was found that the argon ion bombardment could decrease the crystallization temperature owing to the increase of internal energy of the films. Also, the oxygen vacancies at the interface between the SBTN film and platinum bottom electrode or at grain boundaries in the film were passivated through the oxygen ion treatment, resulting in the improved electrical properties. By optimizing the process parameters and using bombardment of accelerated argon and oxygen ions, SBTN films with good ferroelectric and electrical properties could be obtained, at a temperature as low as 650°C.  相似文献   

17.
A solid oxide fuel cell (SOFC) structure is proposed in which a composite thin film cathode substrate supports a dense thin film electrolyte with a thickness of less than 1 μm. The cathode substrate has a graded porosity achieved through the partial sintering of a spin-coated CeO2 colloidal suspension. The resulting surface has a pore size and surface roughness which allowed a fully dense ZrO2:16%Y (YSZ) electrolyte to be spin-coated directly from a polymeric precursor without capillary forces removing the precursor from the surface of the porous substrate. Using this process, fuel cell structures were constructed with temperatures not exceeding 800°C. The porous CeO2 interlayer should allow for decreased ohmic losses, as well as decreased reactions between the YSZ and the cathode substrate. In addition, the nanocrystalline grain sizes should allow for increased catalytic activity on the cathode. Calculated ohmic losses indicated the resistance of the CeO2 interlayer limited the power of the structure, which was minimized by impregnating the porous layer with a mixed-conducting perovskite. The final structure shows significantly reduced ohmic losses as calculated at 400°C.  相似文献   

18.
The microstructural evolution and grain-boundary influence on electrical properties of Ce0.90Gd0.10O1.95 were studied. The nanoscale powders synthesized from a semibatch reactor exhibited 50% green density and 92% sintering density at 1200°C (∼200°C lower than previous studies). Impedance spectra as a function of temperature and grain size were analyzed. The Ce0.90Gd0.10O1.95 with finest grain size possessed highest overall grain-boundary resistance; this contribution was eliminated at temperatures >600°C, regardless of grain size. The grain conductivity was independent of grain size and was dependent on temperature with two distinct regimes, indicative of the presence of Gd'Ce− V o∘∘ complexes that dissociated at a critical temperature of ∼580°C. The activation energy for complex dissociation was ∼0.1 eV; the value for the grain-boundary was ∼1.2eV, which was size independent.  相似文献   

19.
Undoped and CeO2-doped Sr0.5Ba0.5Nb2O6 (SBN) powders were synthesized using the solid-state reaction method. The lattice parameters of undoped and CeO2-doped SBN were evaluated using X-ray diffractometry. The valence state of the cerium ion in Ce-doped SBN was identified using X-ray photoelectron spectroscopy (XPS), and the valence of 3+ was confirmed. The charge-compensated defect of the cerium doping in SBN ceramics, i.e., excessive oxygen ions occupying the vacant O(4) or O(5) site, was further evidenced using electron energy-loss spectroscopy (EELS) and XPS. The relationships of charge-compensated defect, structure, binding energy, and temperature of the maximum of the relative permittivity ( T m) were discussed.  相似文献   

20.
Combined oxide additives (Y2O3, CaO, La2O3, CeO2, SiO2, TiO2, and Fe2O3) were investigated as AIN sintering aids. AIN can be fully sintered at 1600°C to substantial thermal conductivity (92 W/(m·K)) using a multiple sintering aid of Y2O3, CaO, SiO2, La2O3, and CeO2. This lowtemperature material has small grain size (1 to 3 μm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号