首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia–reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.  相似文献   

2.
Xin Ge 《Carbon》2008,46(11):1411-1416
Drastically different catalytic behaviors of nanometer-sized platinum particles which have diverse sizes are observed using in-situ transmission electron microscopy. For small platinum catalyst particles (with diameters less than 5 nm), carbon shells form on the surfaces of the platinum catalyst particles. The formation of the carbon shells starts from the nucleation of amorphous carbon on the preferred (1 1 1) planes of platinum nanoparticles. For these small platinum catalyst particles encapsulated in graphitic shells, they are passivated by the carbon shells and their coalescence is hindered by the surrounding shells. After the platinum catalyst particles ultimately coalesce, they interact to form a compact platinum particle after breaking the encapsulating shells. For larger platinum nanoparticles (with diameters larger than 5 nm), no encapsulation of platinum nanoparticles is observed and there occurs only the coalescence of platinum nanoparticles.  相似文献   

3.
Monodisperse FePt nanoparticles with size of 4.5 and 6.0 nm were prepared by simultaneous reduction of platinum acetylacetonate and thermal decomposition of iron pentacarbonyl in benzylether. The crystallography structure, size, and composition of the FePt nanoparticles were examined by X-ray diffraction and transmission electron microscopy. Energy dispersive X-ray spectrometry measurements of individual particles indicate a broad compositional distribution in both the 4.5 and 6 nm FePt nanoparticles. The effects of compositional distribution on the phase-transition and magnetic properties of the FePt nanoparticles were investigated.  相似文献   

4.
Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.  相似文献   

5.
Disintegrin and metalloproteinase domain 17 (ADAM17) activates inflammatory and fibrotic processes through the shedding of various molecules such as Tumor Necrosis Factor-α (TNF-α) or Transforming Growht Factor-α (TGF-α). There is a well-recognised link between TNF-α, obesity, inflammation, and diabetes. In physiological situations, ADAM17 is expressed mainly in the distal tubular cell while, in renal damage, its expression increases throughout the kidney including the endothelium. The aim of this study was to characterize, for the first time, an experimental mouse model fed a high-fat diet (HFD) with a specific deletion of Adam17 in endothelial cells and to analyse the effects on different renal structures. Endothelial Adam17 knockout male mice and their controls were fed a high-fat diet, to induce obesity, or standard rodent chow, for 22 weeks. Glucose tolerance, urinary albumin-to-creatinine ratio, renal histology, macrophage infiltration, and galectin-3 levels were evaluated. Results showed that obese mice presented higher blood glucose levels, dysregulated glucose homeostasis, and higher body weight compared to control mice. In addition, obese wild-type mice presented an increased albumin-to-creatinine ratio; greater glomerular size and mesangial matrix expansion; and tubular fibrosis with increased galectin-3 expression. Adam17 deletion decreased the albumin-to-creatinine ratio, glomerular mesangial index, and tubular galectin-3 expression. Moreover, macrophage infiltration in the glomeruli of obese Adam17 knockout mice was reduced as compared to obese wild-type mice. In conclusion, the expression of ADAM17 in endothelial cells impacted renal inflammation, modulating the renal function and histology in an obese pre-diabetic mouse model.  相似文献   

6.
Microbial reduction and deposition of gold nanoparticles was achieved at 25 °C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl4 ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods.  相似文献   

7.
Janus particles have attracted increasing attention from the communities of materials science, chemistry, physics and biology. While large size Janus particles are readily achieved, synthesizing Janus nanoparticles (JNP) with diameters smaller than ∼20 nm remains a challenging task. In this article, we report a systematic study on growing polymer brushes on polymer-single-crystal-immobilized 6 and 15 nm diameter gold nanoparticles (AuNPs) using atom transfer radical polymerization. JNPs with bicompartment polymer brushes, such as poly(ethylene oxide) (PEO)/poly(methyl methacrylate), PEO/poly(tert-butyl acrylate), and PEO/poly(acrylic acid), were synthesized. The grafting densities can be carefully controlled. The Janus feature of these particles was confirmed using both platinum nanoparticle decoration and UV/Vis spectroscopy analysis. The surface plasmon resonance absorbance of Janus particles exhibited a blue shift compared with that of symmetric AuNPs with either homopolymer or mixed polymer brushes. This work demonstrated that using polymer single crystal as the templates, small size (<20 nm diameter) JNPs having bicompartment polymer brushes can be readily obtained. The ability to tune grafting density and molecular weight of polymer brushes can lead to controlled particle amphiphilicity.  相似文献   

8.
《Ceramics International》2020,46(12):19691-19700
Nickel oxide has tremendous applications in the field of biomedicine. In this study, NiO nanoparticles were synthesized with different Bi contents (NiO@Bi; 0.0–7.5 wt%), and multifunctional usages were investigated. Structural confirmation was conducted through XRD and Raman studies, which revealed a monophasic cubic system. With increasing Bi content, broadening of the XRD and Raman peaks were observed, indicating a reduction in particle size. The crystallite size was found to be in the range of 10–26 nm. The decrease in particle size was confirmed through dynamic light scattering measurement. The homogeneous distribution of all elements and the presence of Bi were detected by an EDX/SEM e-mapping study. Field emission electron microscopy confirmed the formation of spherical shape nanoparticles. The grain size was reduced from 30 nm to 10 nm with Bi content, in accordance with XRD and Raman results. The Kubelka-Munk method was employed to determine the effect of Bi content on the optical band gap of NiO. The energy gap was reduced with Bi content in the range of 3.32–3.50 eV. Antimicrobial and in vitro cytotoxic characteristics of the prepared NPs were also studied. The results revealed that all NiO@Bi NPs had negligible antimicrobial activity and no cytotoxic effects on both normal and activated splenic cells. The in vivo acute cytotoxicity study indicated no cytotoxic effects on liver and kidney functions. The prepared NiO@Bi NPs were implanted in living organisms without hepatic/renal toxicity, demonstrating excellent biocompatibility, cell viability, and superior quality of nanocrystals, suggesting that the prepared NPs are ideal candidates for antibacterial and biomedical applications.  相似文献   

9.
The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter.  相似文献   

10.
The great attention paid to silver nanoparticles is largely related to their antibacterial and antiviral effects and their possible use as efficient biocidal agents. Silver nanoparticles are being widely introduced into various areas of life, including industry, medicine, and agriculture. This leads to their spreading and entering the environment, which generates the potential risk of toxic effect on humans and other biological organisms. Proposed paper describes the preparation of silver hydrosols containing spherical metal nanoparticles by photochemical reduction of Ag+ ions with oxalate ions. In deaerated solutions, this gives ~10 nm particles, while in aerated solutions, ~20 nm particles with inclusion of the oxide Ag2O are obtained. Nanoparticles inhibit the bacterium Escherichia coli and suppress the cell growth at concentrations of ~1 × 10−6–1 × 10−4 mol L−1. Silver particles cause the loss of pili and deformation and destruction of cell membranes. A mechanism of antibacterial action was proposed, taking into account indirect suppressing action of Ag+ ions released upon the oxidative metal dissolution and direct (contact) action of nanoparticles on bacterial cells, resulting in a change in the shape and destruction of the bacteria.  相似文献   

11.
The effect of the properties of a nanostructured gold surface (nano-Au surface) on the aggregation of Amyloid ??(1?C40) (A??40) was investigated. A nano-Au surface, in the form of immobilized nanoparticles, was prepared by using a thermal evaporator, resulting in the formation of nanosized clusters with sizes less than 10 nm. When A??40 was incubated with the nano-Au surface, abnormally large-sized tubular aggregates were formed on the surface and typical fibril formation was suppressed in the solution. This abnormally large tubular structure represents a novel type of A??40 aggregate. In the absence of the nano-Au surface, the diameters of the A??40 fibrils were less than 10 nm. However, the height of the tubular aggregates formed on a nano-Au surface was 80?C100 nm. Such large-sized aggregates of A??40 have not been reported in previous studies dealing with interactions of suspended nanoparticles with proteins. This can be attributed to differences in the aggregation mechanism between immobilized and suspended nanoparticles. The formation of A??40 aggregates by nano-Au surface will provide the possible mechanism for abnormal fibril formation.  相似文献   

12.
Teow Y  Valiyaveettil S 《Nanoscale》2010,2(12):2607-2613
Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.  相似文献   

13.
Glioblastoma multiforme (GBM) is the most common lethal primary brain malignancy without reliable therapeutic drugs. IL-13Rα2 is frequently expressed in GBMs as a molecular marker. Resveratrol (Res) effectively inhibits GBM cell growth but has not been applied in vivo because of its low brain bioavailability when administered systemically. A sustained-release and GBM-targeting resveratrol form may overcome this therapeutic dilemma. To achieve this goal, encapsulated Res 30 ± 4.8 nm IL-13Rα2-targeting nanoparticles (Pep-PP@Res) were constructed. Ultraviolet spectrophotometry revealed prolonged Res release (about 25%) from Pep-PP@Res in 48 h and fluorescent confocal microscopy showed the prolonged intracellular Res retention time of Pep-PP@Res (>24 h) in comparison with that of free Res (<4 h) and PP@Res (<4 h). MTT and EdU cell proliferation assays showed stronger suppressive effects of Pep-PP@Res on rat C6 GBM cells than that of PP@Res (p = 0.024) and Res (p = 0.009) when used twice for 4 h/day. Pep-PP@Res had little toxic effect on normal rat brain cells. The in vivo anti-glioblastoma effects of Res can be distinctly improved in the form of Pep-PP@Res nanoparticles via activating JNK signaling, upregulating proapoptosis gene expression and, finally, resulting in extensive apoptosis. Pep-PP@Res with sustained release and GBM-targeting properties would be suitable for in vivo management of GBMs.  相似文献   

14.
15.
Observation of the oxidation–reduction processes occurring at the nanoelectrode–solution interface demonstrates how electrochemical behavior depends upon nanoelectrode size. The use of a modified form of pulsed laser ablation as an improved method to synthesize nanometer-scaled electrode materials easily and consistently is reported. This method of fabrication enables platinum metal nanoparticles averaging 3 nm in diameter and approximately 5.0 × 1011 particles/cm2 to be deposited onto silicon substrates using optimum ablation parameters. A platinum silicide phase exists at the interface of the platinum and silicon as a result of the ablation process. Electrochemical results demonstrate the presence of a large number of isolated platinum particles (1.1 × 107 particles/cm2), separated by an average edge to edge distance of 14 nm, which are electrochemically active nanoelectrodes.  相似文献   

16.
Gold nanoparticles were synthesized by a hot-wire generator at atmospheric pressure using a gold-platinum composite wire. At low gas flow velocities the nanoparticles were found to be agglomerates of partially sintered primary particles. By reducing the tube size via the insertion of a nozzle with a throat diameter of 3 mm, the hot-wire generator was found to produce small (<10 nm diameter) crystalline gold particles. Elemental and x-ray photoelectron spectroscopy analysis of the particles showed that they were composed of gold with no platinum impurity. Charging analysis of the “as-produced” nanoparticles showed that fewer than 10% of the particles were charged, but the charge fraction increased as the applied power increased, as did the ratio of negatively-to-positively-charged particles.  相似文献   

17.
Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 μm) and two types of titanium oxide particles (80 nm and < 44 μm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations ≥ 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations ≥62.5 μg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.  相似文献   

18.
Platinum catalysts have been prepared by depositing on alumina monodispersed particles of platinum prepared in reversed micellar solution. After deposition, the particles are well dispersed on the support and the size distribution has a sharp maximum around 2 nm. The isomerization and hydrogenolysis of hexanes were studied in order to get more information about the particle size effects on the selectivities of Pt catalysts in these reactions.It was found that this catalyst exhibits the same selectivities as a low dispersed ordinary platinum catalyst. These selectivity values are quite different from the ones given by a highly dispersed classical catalyst in spite of the fact that the catalysts have fairly similar average particle size. Such results confirm the conclusions previously proposed that isomerisation via cyclic mechanism and non selective hydrogenolysis of hexanes take place only on platinum particles smaller than 1 nm.  相似文献   

19.
Xiang Li  Jie Zhao  Zhu-De Xu 《Carbon》2005,43(10):2168-2174
Pt nanoparticles with different mean sizes supported on carbon nanotubes were synthesized by microwave heating ethylene glycol solutions of platinum salt with different pH in present of CNTs as supports. TEM examinations showed that Pt particles become smaller and more uniform when the synthesis pH increased from 3.4 to 9.2. The mean particle size was 5.8, 5.2, 3.4 and 2.7 nm when the synthesis pH was 3.6, 5.8, 7.4 and 9.2, respectively. The effects of the pH on Pt particle size and distribution were investigated. The pH was an important factor that influenced the particle size. Pt particles size could be thus selected by adjusting the synthesis solution pH. Pt/CNTs with suitable and uniform Pt particle size could be obtained. Electrochemical measurements showed that the Pt/CNTs catalyst prepared from the synthesis solution pH of 7.4 exhibited better performances for methanol electrooxidization than other samples.  相似文献   

20.
Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号