首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron-microscopy studies of GaAs structures grown by the method of molecular-beam epitaxy and containing arrays of semiconductor InAs quantum dots and metallic As quantum dots are performed. An array of InAs quantum dots is formed using the Stranski-Krastanow mechanism and consists of five layers of vertically conjugated quantum dots divided by a 5-nm-thick GaAs spacer layer. The array of As quantum dots is formed in an As-enriched GaAs layer grown at a low temperature above an array of InAs quantum dots using postgrowth annealing at temperatures of 400–600°C for 15 min. It is found that, during the course of structure growth near the InAs quantum dots, misfit defects are formed; these defects are represented by 60° or edge dislocations located in the heterointerface plane of the semiconductor quantum dots and penetrating to the surface through a layer of “low-temperature” GaAs. The presence of such structural defects leads to the formation of As quantum dots in the vicinity of the middle of the InAs conjugated quantum dots beyond the layer of “low-temperature” GaAs.  相似文献   

2.
Epitaxial GaAs layers containing InAs semiconductor quantum dots and As metal quantum dots are grown by molecular beam epitaxy. The InAs quantum dots are formed by the Stranskii-Krastanow mechanism, whereas the As quantum dots are self-assembled in the GaAs layer grown at low temperature with a large As excess. The microstructure of the samples is studied by transmission electron microscopy. It is established that the As metal quantum dots formed in the immediate vicinity of the InAs semiconductor quantum dots are larger in size than the As quantum dots formed far from the InAs quantum dots. This is apparently due to the effect of strain fields of the InAs quantum dots upon the self-assembling of As quantum dots. Another phenomenon apparently associated with local strains around the InAs quantum dots is the formation of V-like defects (stacking faults) during the overgrowth of the InAs quantum dots with the GaAs layer by low-temperature molecular beam epitaxy. Such defects have a profound effect on the self-assembling of As quantum dots. Specifically, on high-temperature annealing needed for the formation of large-sized As quantum dots by Ostwald ripening, the V-like defects bring about the dissolution of the As quantum dots in the vicinity of the defects. In this case, excess arsenic most probably diffuses towards the open surface of the sample via the channels of accelerated diffusion in the planes of stacking faults.  相似文献   

3.
在不同生长条件下,生长低组分InGaAs/GaAs自组织量子点并且使用接触式AFM进行测量.通过对生长条件的优化,得到高密度、高均匀性的量子点MBE生长条件,这对于自组织量子点在器件方面的应用,比如量子点红外探测器和量子点激光器,是非常重要的.同时,还与优化的InAs/GaAs生长条件进行了比较.  相似文献   

4.
在不同生长条件下,生长低组分InGaAs/GaAs自组织量子点并且使用接触式AFM进行测量.通过对生长条件的优化,得到高密度、高均匀性的量子点MBE生长条件,这对于自组织量子点在器件方面的应用,比如量子点红外探测器和量子点激光器,是非常重要的.同时,还与优化的InAs/GaAs生长条件进行了比较.  相似文献   

5.
Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures.  相似文献   

6.
The modification produced in the structural and optical properties of vertically coupled In0.5Ga0.5As quantum dots in a GaAs matrix by increasing the number of deposited layers of quantum dots has been investigated. It was shown that the deposition of a sequence of In0.5Ga0.5As quantum-dot planes separated by narrow (of the order of the height of the quantum dots) GaAs layers gives rise to an interaction between neighboring vertically coupled quantum dots. This interaction shifts the photoluminescence line due to the recombination of nonequilibrium carriers via states of the quantum dots into the region of lower photon energies. Fiz. Tekh. Poluprovodn. 31, 851–854 (July 1997)  相似文献   

7.
The distribution of hydrostatic strains in Bi3+-doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi → As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.  相似文献   

8.
提出了利用分子束外延方法生长In0.5Ga0.5As/In0.5Al0.5As应变耦合量子点,并分析量子点的形貌和光学性质随GaAs隔离层厚度变化的特点。实验结果表明,随着耦合量子点中的GaAs隔离层厚度从2 nm增加到10 nm,In0.5Ga0.5As量子点的密度增大、均匀性提高, Al原子扩散和浸润层对量子点PL谱的影响被消除,而且InAlAs材料的宽禁带特征使其成为InGaAs量子点红外探测器中的暗电流阻挡层。由此可见,选择合适的GaAs隔离层厚度形成InGaAs/InAlAs应变耦合量子点将有益于InGaAs量子点红外探测器的研究。  相似文献   

9.
Heterostructures with In(Ga)As/GaAs quantum dots and quantum wells grown at low substrate temperature were studied by reflection high-energy electron diffraction, transmission electron microscopy, and photoluminescence methods. It is shown that InAs deposited onto (100) GaAs surface at low substrate temperature forms 2D clusters composed of separate quantum dots. Optical spectra of structures containing such clusters demonstrate emission in the 1.5–1.6 μm range. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 12, 2003, pp. 1456–1460. Original Russian Text Copyright ? 2003 by Tonkikh, Tsyrlin, Talalaev, Novikov, Egorov, Polyakov, Samsonenko, Ustinov, Zakharov, Werner.  相似文献   

10.
We have established a new concept for creating ordered arrays of quantum dots by self-organized epitaxy. The concept is based on self-organized anisotropic strain engineering of strained layer templates and is demonstrated for (In,Ga)As/GaAs superlattice structures on GaAs (100) and strain-induced (In,Ga)As growth instability on GaAs (311)B. The well-defined one- and two-dimensional networks of InAs quantum dots grown on top of these templates are of excellent structural and optical quality. This breakthrough, thus, allows for novel fundamental studies and device operation principles based on single and multiple carrier- and photon-, and coherent quantum interference effects.  相似文献   

11.
Deep-level transient spectroscopy is used to study the emission of holes from the states of a vertically coupled system of InAs quantum dots in p-n InAs/GaAs heterostructures. This emission was considered in relation to the thickness of a GaAs interlayer between two layers of InAs quantum dots and to the reversebias voltage Ur. It is established that hole localization at one of the quantum dots is observed for a quantum-dot molecule composed of two vertically coupled self-organized quantum dots in an InAS/GaAs heterostructure that has a 20-Å-thick or 40-Å-thick GaAs interlayer between two layers of InAs quantum dots. For a thickness of the GaAs interlayer equal to 100 Å, it is found that the two layers of quantum dots are incompletely coupled, which results in a redistribution of the hole localization between the upper and lower quantum dots as the voltage Ur applied to the structure is varied. The studied structures with vertically coupled quantum dots were grown by molecular-beam epitaxy using self-organization effects.  相似文献   

12.
A theoretical model for calculating the energy characteristics of surfaces of InAs quantum dots in a GaAs(100) matrix is described. The model is based on notions of nonequilibrium thermodynamics and surface physics. The results of calculating the magnitudes of the surface energy and adhesion physical quantities as well as pressures in the vicinity of the edges of InAs quantum dots in a GaAs(100) matrix are presented. The causes of bending of the profile of the lower part of the quantum dot are presented using the Young relationship. These results can be used to asses the stress-relaxation mechanisms during the course of the selforganization of InAs quantum dots in a GaAs(100) matrix.  相似文献   

13.
The surface morphology and optical properties of the (In,Ga)As/GaAs(100) multilayer structures with self-organized quantum dots and quantum wires, which were grown by molecular-beam epitaxy, are investigated. It is found that the ordered arrangement of quantum dots in the heterointerface plane starts to form during the growth of the first periods of the multilayer structure. As the number of periods increases, quantum dots line up in series and form wires along the \([0\bar 11]\) direction. An increase in the lateral ordering of the structures under consideration correlates with an increase in the optical emission anisotropy governed by relaxation anisotropy of elastic strains and by the shape of nano-objects. A possible mechanism of lateral ordering of quantum dots and wires in multilayer structures, which includes both anisotropy effects of the strain fields and adatom diffusion, as well as the elastic interaction of neighboring quantum dots, is discussed.  相似文献   

14.
自组织生长方法作为一种有效而直接的制备半导体量子点的方法受到重视。本文采用无需在样品上制备电极的电容耦合的光伏谱方法,实验测量了In0.4Ga0.6As/GaAs自组织量子点在不同的温度下的光伏谱,对测量谱峰进行了指认,研究了量子点谱峰能量位置随温度的依赖关系,实验结果表明,量子点具有与体材料及二维体系不同的温度特性,对实验所测样品,其激子峰能量随温度增加而红移的速率约为GaAs体材料带隙变化的1  相似文献   

15.
在分子束外延系统中,利用3nmGaAs薄盖层将InAs自组装量子点部分覆盖,然后在500°C以及As2气氛中退火一分钟,制成纳米尺度的InAs量子环。这一形成敏感地依赖于退火时的生长条件和生长InAs自组装量子点时的淀积量。InAs在GaAs表面的扩散以及同时发生的In-Ga互混控制着InAs量子环的形成。  相似文献   

16.
The growth peculiarities of In0.8Ga0.2As quantum dots and their arrays on GaAs surface by metalorganic vapor-phase epitaxy are investigated. The bimodal size distribution of In0.8Ga0.2As quantum dots is established from the photoluminescence spectra recorded at different temperatures. The growth parameters were determined at which the stacking of 20 In0.8Ga0.2As quantum-dot layers in the active area of a GaAs solar cell makes it possible to enhance the photogenerated current by 0.97 and 0.77 mA/cm2 for space and terrestrial solar spectra, respectively, with the high quality of the p–n junction retained. The photogenerated current in a solar cell with quantum dots is higher than in the reference GaAs structure by ~1% with regard to nonradiative-recombination loss originating from stresses induced by the quantum-dot array.  相似文献   

17.
Features of the growth of InAs quantum dots in an Al0.35Ga0.65As matrix by molecular beam epitaxy at different substrate temperatures, deposition rates, and amounts of deposited InAs are studied. The optimum conditions for growing an array of low-density (≤2 × 1010 cm?2) small (height of no more than 4 nm) self-organized quantum dots are determined. The possibility of the formation of optically active InAs quantum dots emitting in the energy range 1.3–1.4 eV at a distance of no more than 10 nm from the coherent heterovalent GaAs/ZnSe interface is demonstrated. It is established that inserting an optically inactive 5-nm GaAs quantum well resonantly coupled with InAs quantum dots into the upper AlGaAs barrier layer enhances the photoluminescence efficiency of the quantum-dot array in hybrid heterostructures.  相似文献   

18.
Capacitance- and conductance-voltage studies have been carried out on Schottky barrier structures containing a sheet of self-organized InAs quantum dots. The dots are formed in GaAs n-type matrices after the deposition of four monolayers of InAs. Quasi-static analysis of capacitance-voltage measurements indicates that there are at least two filled electron levels in the quantum dots, located 60 and 140 meV below the GaAs conduction band edge. The conductance of the structure depends on the balance between measurement frequency and the thermionic emission rate of carriers from the quantum dots. An investigation of the temperature-dependent conductance at different frequencies as a function of the reverse bias allows us to study separately the electron emission rates from the ground and first excited levels in the quantum dots. We estimate that the electron escape times from both levels of the quantum dots become comparable at room temperature and equal to about 100 ps.  相似文献   

19.
Self-assembled (In,Mn)As quantum dots are synthesized by molecular-beam epitaxy on GaAs (001) substrates. The experimental results obtained by transmission electron microscopy show that doping of the central part of the quantum dots with Mn does not bring about the formation of structural defects. The optical properties of the samples, including those in external magnetic fields, are studied.  相似文献   

20.
We present a study on the effects of quantum dot coverage on the properties of InAs dots embedded in GaAs and in metamorphic In0.15Ga0.85As confining layers grown by molecular beam epitaxy on GaAs substrates. We show that redshifted emission wavelengths exceeding 1.3 μm at room temperature were obtained by the combined use of InGaAs confining layers and high quantum dot coverage. The use of high InAs coverage, however, leads to detrimental effects on the optical and electrical properties of the structures. We relate such behaviour to the formation of extended structural defects originating from relaxed large-sized quantum dots that nucleate in accordance to thermodynamic equilibrium theories predicting the quantum dot ripening. The effect of the reduced lattice-mismatch of InGaAs metamorphic layers on quantum dot ripening is discussed in comparison with the InAs/GaAs system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号