首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以氧化锌烟尘浸出液沉锗后液为原料,氧化锌烟尘为中和剂,高锰酸钾为氧化剂,采用两段逆流中和工艺,实现湿法炼锌铁渣从源头减量。研究表明,在氧化锌烟尘用量5 g/L、反应温度80 ℃、中和反应时间1 h条件下,溶液砷含量从719.20 mg/L降低至8.60 mg/L,砷脱除率达到98.83%,渣量降低至含8 g/L。渣经过艾萨炉炼铅系统处理,实现锌、铅、锗有价金属的回收和砷的集中处置。  相似文献   

2.
氧化锌烟尘中铟的高效浸出新工艺研究   总被引:2,自引:0,他引:2  
铟因其优良的特异性能而具有广泛的工业用途,如何从含铟物料中高效回收铟成为技术的关键,但目前铟的提取工艺均存在铟回收率不高的问题。本研究采用"中性浸出—低温低酸浸出—高温强化浸出"新工艺实现含铟氧化锌烟尘中铟的高效浸出,研究了铟高效浸出的工艺条件和浸出机理,实验结果表明:中性浸出能优先分离烟尘中的锌,使铟富集到中浸渣中;中浸渣先经低温低酸浸出使高价态铟转入溶液;难溶铟入渣后再经高温强化浸出处理,将低价态铟氧化成高价态、并破坏难溶铟物相的表面结构,从而强化铟的溶出。铟最终在低温低酸浸出液中富集,铟的浸出率≥95%。本研究为各种含铟资源中铟的高效回收与稀有金属资源的有效利用提供了新的方法与理论指导,具有很好的工业应用前景。  相似文献   

3.
采用富氧常压浸出—中和工艺处理含锗氧化锌烟尘,通过酸度控制和富氧浸出提高烟尘中锗的浸出率,同步控制溶液中铁价态与浓度。通过小型试验、扩大试验、工业化试验,烟尘在酸浸温度90℃、液固比7∶1、控制pH=0.3~0.5的条件下常压通氧酸浸4h;再控制矿浆pH=3.0~3.5、温度90℃、反应时间1.5h进行酸浸液的中和,锌浸出率达到90%以上,锗浸出率达到80%以上,同时可将溶液中Fe~(3+)浓度控制在0.02g/L以内,有利于后续溶液中锗的高效分离回收。  相似文献   

4.
对高铁闪锌矿湿法炼锌过程中产出的含铟硫酸钙渣开展了一段酸浸—浸出液铁粉还原—还原液净化预处理—萃取—反萃试验研究,实现了铟与其他杂质元素的分离与高效回收。含铟硫酸钙渣在终酸70g/L、温度80℃、液固比4∶1、时间2h的条件下进行一段酸浸,铟浸出率98%以上;用铁粉将浸出液中的Fe~(3+)还原为Fe~(2+),铁粉过量系数1.5,Fe~(3+)还原率在98%以上;添加8g/L的活性炭对还原液进行净化预处理;用30%的P204在酸度70g/L、相比A/O=4∶1、混合时间3min、温度45℃的条件下对净化液进行四级逆流萃取,铟萃取率达到97.5%以上,萃余液含铟小于4mg/L;负载有机相用6mol/L的盐酸,相比A/O=1∶12,经过四级连续反萃,反萃液铟浓度可富集至70g/L以上。  相似文献   

5.
以湿法炼锌渣高温挥发所得含铟氧化锌烟尘为原料,在对其进行物性分析基础上,提出在中性体系环境下微波辅助浸出氧化锌烟尘中锌的同时富集铟于渣中。考察了微波功率、硫酸浓度、浸出温度、浸出时间、液固比对烟尘中锌浸出率和铟富集率的影响。结果表明,在初始硫酸浓度65 g/L、浸出时间10 min、浸出温度65℃、液固比4 mL/g、微波功率600 W的条件下,锌的浸出率为80.31%,铟的富集率为42.23%,终点pH维持在5.1,铁几乎不被溶出。本方法实现了氧化锌烟尘中锌与铟的有效分离,并成功富集了铟,为后续铟的高效回收提供有利保障。  相似文献   

6.
以常规湿法炼锌工艺锌浸渣为研究对象,对比研究常压酸浸和加压酸浸条件下锌浸渣的酸性浸出减量化效果,以及渣中锌、铜和铟等有价金属的浸出率。结果表明,在常压酸浸条件下,渣量可减少65%以上,渣中锌含量可降至3%左右,锌、铜和铟的浸出率均在91%以上;在加压酸浸条件下,渣量可减少40%以上,渣中锌含量可将至2%以下,锌和铜的浸出率达到95%左右,但铟浸出率仅为70%左右,相对较低。常压酸浸过程锌浸渣中的铁绝大部分浸出,有利于铟的浸出;加压酸浸过程锌浸渣中的铁大量以铅铁矾的形式留在渣中,阻碍了铟的浸出。常压浸出液中铁含量较高,达到25 g/L以上;加压浸出液中铁含量较低,小于2 g/L,有利于后续浸出液中铜、铟的回收。常压浸出渣量少,有利于渣中铅、银的富集,可单独销售;加压浸出由于铁沉淀入渣,致使渣中铅、银富集比低,适合于铅锌联合企业返回铅熔炼炉。  相似文献   

7.
含砷烟尘的综合利用   总被引:1,自引:1,他引:0       下载免费PDF全文
采用氢氧化钠碱性浸出分离回收含砷烟尘中的砷,在优化试验条件下,砷、锑、铅的浸出率分别为99.27%、1.83%和0.20%;砷浸出液经氧化—冷却结晶回收砷酸钠后返回浸出过程循环利用,整个脱砷工艺闭路循环。采用硫化钠浸出—空气氧化法分离回收含砷烟尘碱浸渣中的锑并制备焦锑酸钠,碱浸渣中锑的浸出率为93.03%,锑浸出液中锑沉淀率为98.51%。采用硫酸浸出—铝板置换分离回收硫化钠浸出渣中的铟并制备海绵铟,铟的浸出率为71.83%。硫酸浸出渣中铅的主要以PbS的形式存在,可以作为铅冶炼的原料返回铅厂回收铅。  相似文献   

8.
采用氢氧化钠浸出高砷锡烟尘进行脱砷试验研究,在氢氧化钠浓度150 g/L、双氧水与烟尘质量比0.15、液固体积质量比5:1、反应时间4 h、反应温度90℃的条件下,砷浸出率92.5%,浸出渣含砷1.5%。浸出渣回收锡、铟,碱浸液冷却结晶回收砷酸钠,实现高砷锡烟尘中砷与锡、铟的有效分离。  相似文献   

9.
湿法炼锌赤铁矿法回收铟的主要工艺流程为利用二氧化硫还原浸出低酸浸出渣中的铟,还原浸出后液酸度约30 g/L,需要预先中和使酸度降至10 g/L,然后加入碳酸钙中和沉铟、富集铟,沉铟渣经浸出、净化、萃取等工艺流程回收铟。预中和过程中产生的石膏渣会夹带部分铟,造成铟的损失。本文通过进行单因素试验,研究预中和液中Fe3+浓度、终点酸度及反应时间等试验条件变化对预中和石膏渣含铟量、石膏渣沉降及过滤性能的影响。试验结果表明,由于In3+与Fe3+性质相似,在黄钠铁矾形成过程中,In3+可部分取代Fe3+形成晶间化合物进入渣中,因此Fe3+含量越高,预中和石膏渣含铟量越高;终点酸度小于10 g/L时,溶液中的Al、Si易生成胶状物,与Ca化合生成钙铝黄长石沉淀,影响矿浆沉降性能及过滤性能,终点酸越低,石膏渣含铟量越高,过滤性能越差;随着反应时间的延长,溶液中Fe2+氧化成Fe3+的量越多,石膏渣含铟量逐渐增加。  相似文献   

10.
氧压酸浸炼锌流程中置换渣提取锗镓铟   总被引:3,自引:0,他引:3  
为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2SO4-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3~5氧肟酸+二(2-乙基已基)(P204)磷酸及5-壬基水杨醛肟(CP150)分别萃取铟,锗镓及铜;二段浸出液用C3~5氧肟酸萃取提锗,萃余液加入氟化钠沉淀氟硅酸钠。试验结果显示,一段浸出用酸度为3.1 N的湿法炼锌电积废液,液固比4∶1,初始氧分压0.4 MPa,150℃,经3 h的二级浸出后,浸出渣率约为15%,铟镓铜锌4个元素的浸出率都达到98%,而锗浸出率约为80%;一段浸出残渣用H2SO4-HF混酸浸出,其氟/硅摩尔比4.2∶1.0,硫酸浓度为2 N温度80℃,液固比3∶1,浸出时间为5 h,一段浸出残渣中锗几乎完全浸出;一段浸出液在pH 2.0~2.2,30%二(2-乙基已基)磷酸萃取,部分铁与几乎所有的铟被萃取,用2 N盐酸反萃,铟、铁的反萃率分别为98.28%和2.79%,可达到铟铁的分离;萃铟余液用3%的氧肟酸+10%二(2-乙基已基)磷酸-煤油协萃锗、镓,铁也发生共萃,锗、镓和铁的单级萃取率均在90%以上,采用次氯酸钠反萃,锗反萃率近100%,且Ge/Ga和Ge/Fe的反萃分离系数分别为10836和318.7。用3 mol·L-1的硫酸,相比(W/O)1∶2反萃镓,镓的一次反萃率达97.5%。二段浸出液采用10%C3~5氧肟酸-煤油萃取,相比(O/W)为1.2∶1.0,锗的单级萃取率达到98.31%。经30%次氯酸钠溶液反萃,锗的一次反萃率达到98.83%,萃余液加入氟化钠,氟硅化物的沉淀率为90%左右。沉硅滤液经补充氢氟酸后返回二段沉出,锗的浸出仍可达到较完全的浸出。该工艺无废液排放,并且通过与湿法炼锌流程的物料交换而变得简化。  相似文献   

11.
采用中性浸出—酸性浸出—溶剂萃取工艺流程从含铟氧化锌烟尘中提铟。考察浸出温度、浸出时间、硫酸浓度、液固比对浸出效果的影响以及萃取剂浓度、萃取相比和初始酸度对铟萃取率的影响。结果表明,中性浸出除锌后再酸性浸出铟,铟浸出率高达91.6%,铟萃取率超过90%。  相似文献   

12.
从含铟氧化锌烟尘中回收铟   总被引:4,自引:2,他引:2       下载免费PDF全文
采用中性和酸性两步浸出、萃取与反萃、置换工艺流程从含铟氧化锌烟尘中制备海绵铟,考察中性浸出的初始酸度和氧化剂用量、酸性浸出的浸出酸度和时间等对锌和铟浸出的影响。结果表明,在最佳条件下,铟和锌浸出率分别为90.60%和89.28%。浸出液经过萃取、反萃取、锌粉置换得到海绵铟,其中三级逆流萃取率99.80%、三级逆流反萃率99.90%、置换率99.50%。  相似文献   

13.
黄钾铁矾法处理含铟高铁锌精矿   总被引:1,自引:0,他引:1  
黄钾铁矾法处理高铁高铟锌精矿时,锌的总回收率较高;锌冶炼过程中原料中大部分的铟进入矾渣,少部分进入高浸渣,矾渣和高浸渣经高温焙烧、浸出、萃取、电解和铸锭后即可得到电铟。较好的浸出条件为:中浸始酸40 g/L、低浸始酸30 g/L、高浸终酸60 g/L。已有的生产实践表明采用该工艺铟总回收率可达72%左右,锌的总回收率可达92%。  相似文献   

14.
高铅硅锌渣绿色回收锗铟的新工艺研究   总被引:2,自引:2,他引:0       下载免费PDF全文
针对锌渣中铅、硅含量高的特点,采用中性浸锌—二段氧压浸出—一段萃取提铟—钙盐蒸馏提锗工艺,锗、铟回收率分别达到93.2%和95.6%,是一个安全、绿色、高效、经济型新工艺。  相似文献   

15.
在高新技术对锗需求日益增长的背景下,基于对烟尘浸出渣中锗赋存状态的考察,查明了硅锗聚合沉淀机制,及超声诱导锗硅沉淀高效分散解聚机制。采用相关性分析等首次为锗硅聚合沉淀猜想提供实质性证据,Ge-Si相关性系数k为66.57,相关性拟合度R2高达97.99%。在含锗氧化锌烟尘浸出过程中,溶液中硅离子会聚合形成硅酸胶体吸附溶液中的锗,引起锗损失14.81%,造成锗工业回收率低。超声引入浸出过程后,会在溶液中会产生空化气泡,发生空化作用,空化气泡破裂时释放的能量形成局部的高温高压并产生冲击波与微射流,会持续不断冲击聚硅酸胶体表面,使得聚硅酸胶体比表面积增大58.19%,孔径增大666.32%,孔容增大165.79%,使得大颗粒的硅胶解聚为小颗粒的低聚硅酸,降低硅胶对锗的吸附,超声条件下锗损失降低了59.35%。研究建立的氧化锌烟尘浸出过程硅-锗沉淀高效分散解聚,可有效实现氧化锌烟尘中锗高效回收。  相似文献   

16.
采用P204对冶炼厂低品位锌烟尘的浸出液进行萃取试验。结果表明,采用P204三级逆流萃取,锌萃取率为53.7%,反萃率大于99%;中浸液中的杂质砷、锑、镉、镍、氟、氯留在萃余液中,降低了杂质的处理成本。  相似文献   

17.
锗的氧肟酸HGS98萃取分离研究   总被引:6,自引:0,他引:6  
主要了湿法炼因余液中锗的萃取分离提取,以氧肟酸HGS98为萃取剂,P204为协萃剂,煤油为稀释剂,NH4F为反萃剂,系统地讨论了锗的萃取分离机理和提取条件。所研究的工艺选择性好,金属回收率高,操作简便、为冶金废弃物中高价金属锗 收提供了一种新的方法。  相似文献   

18.
炼铜烟尘湿法处理综合回收有价金属的新工艺研究   总被引:2,自引:0,他引:2  
针对铜火法冶炼过程中产生的烟尘,采用两段浸出、硫化物沉淀、沉淀转化处理工艺,使铜以硫化铜的形式回收并进入铜火法冶炼工艺流程、锌以工业级七水硫酸锌的形式回收、锡和铅进入渣而得到富集。整个过程铜回收率96.85%,锌回收率92.69%,铅、锡、银等金属富集于铅渣中,其含量分别达到了28%、10%、1.425%。  相似文献   

19.
采用常压-加压联合浸出工艺从含锗氧化锌烟尘中高效浸出锌、锗,研究了浸出时间和温度、硫酸用量、液固比等对锌、锗浸出率的影响。结果表明,在最佳工艺条件下,锌、锗浸出率分别为96.92%、89.72%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号