首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了更好地对矿井回采工作面瓦斯的涌出量做出准确的预测,提出了将改进的人工蜂群与最小二乘支持向量机(IABC-LSSVM)相耦合的瓦斯涌出量预测方法.首先,在人工蜂群(ABC)算法中引入混沌序列来确定更优的初始蜜源,并结合自适应因子更新搜索步长,从而避免陷入局部最优的情况;然后,利用改进后的人工蜂群算法对最小二乘机的核宽...  相似文献   

2.
研究瓦斯涌出量预测问题,瓦斯涌出量受到开采深度、通风系统等多种因素影响,是一种复杂的非线性预测问题,传统预测方法难以建立准确数学模型,导致预测精度低。为了有效提高瓦斯涌出量预测精度,提出一种非线性的瓦斯涌出量预测算法。采用粒子群优化支持向量机对瓦斯涌出量与各种因素之间非线性关系进行建模,并对瓦斯涌出量预测进行仿真。结果表明,非线性预测算法有效提高了瓦斯涌出量的预测精度,降低了预测误差,对有效防止瓦斯爆炸有重要意义。  相似文献   

3.
为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法.相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行之有效的方法.并用CSO算法对RVM瓦斯涌出量预测模型的核函数权重p和高斯核参数σ快速寻优.利用矿井无线传感器网络检测到的各项历史数据试验.结果表明,相比BP、SVM算法,该耦合模型有效提高了预测精度,具有更好的泛化能力,为矿井瓦斯预测提供理论支持.  相似文献   

4.
针对煤矿工作面瓦斯涌出量的多影响因素、非线性、时变性和不确定性等特点,提出了遗传模拟退火算法(GASA)与回归型支持向量机(SVR)的耦合算法(GASA-SVR)用于瓦斯涌出量预测.利用煤层瓦斯含量、深度、厚度、倾角等12个参数作为主要影响因素,经过归一化处理后作为回归型支持向量机训练和测试样本.采用遗传模拟退火算法寻找最优的惩罚参数和核函数参数,同时引入自适应交叉和变异概念,建立瓦斯涌出量的非线性拟合模型,并利用矿井实测历史数据进行试验,结果表明该预测模型比传统的神经网络模型具有更理想的精度和稳定性,可为煤矿瓦斯爆炸的防治提供可靠的理论依据.  相似文献   

5.
为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的蚁群(ACO)粒子群(PSO)混合算法优化的最小二乘支持向量机(LS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对LS-SVM的正则化参数C和高斯核参数σ进行寻优,建立了基于蚁群粒子群混合算法优化的瓦斯涌出量预测模型,并根据赵各庄矿矿井监测到的各项历史数据进行实例分析。实验结果表明:该预测模型预测的最大相对误差为1.05%,最小相对误差为0.28%,平均相对误差为0.75%。较其他预测模型拥有更强的泛化能力和更高的预测精度。  相似文献   

6.
支持向量机(Support Vector Machine)具备很强的非线性建模能力,而且具有全局最优、结构简单等优点,近年来被广泛的应用于煤矿瓦斯预测方面,但其在处理样本时,不能确定数据中哪些知识是冗余的、不能将输入的信息空间维数简化,因此,会降低系统预测的精确性;将模糊粗糙集理论引入瓦斯涌出量的预测中,建立基于模糊粗糙集与支持向量机的瓦斯涌出量预测模型,用模糊粗糙集作为前端预处理器对数据进行约简,剔除冗余信息,以实现两种算法的优势互补.实验结果显示,该方法预测准确,具有较高的应用价值.  相似文献   

7.
为了能够实现高精度与实时性的动态预测煤矿绝对瓦斯涌出量,本文提出了等容特征映射IsoMap(Isometric feature Mapping)与改进细菌觅食优化算法MBFO(Modified Bacteria Foraging Optimization)优化支持向量回归机SVR(Support Vector Regression)相结合的预测方法。瓦斯涌出是在多种影响因子共同作用下的结果,并且这些因素之间是复杂的非线性关系,因此本文中提出采用流形学习方法IsoMap对其进行降维特征提取,该方法用测地距离(geodesic distace)取代了普遍采用的欧氏距离,有利于对高维特征内在关系的挖掘,取得了优于传统的主成分分析(PCA)的结果;将MBFO算法对SVR的相关参数进行寻优;将IsoMap分析结果输入预测模型。仿真表明,与PSO算法比较,本文提出的预测方法预测精度较高,更加有利于对瓦斯涌出量预测。  相似文献   

8.
《工矿自动化》2015,(8):51-55
为了分析瓦斯涌出量预测结果的不确定性,提出一种基于相关向量机的估计方法:依据稀疏贝叶斯学习模型,计算瓦斯涌出量样本空间的稀疏相关支持向量和相应的超参数,再计算预测结果的均值和方差,从而得出瓦斯涌出量预测结果的概率分布和置信区间。分析结果表明,3组检验样本的平均预测误差为1.74%,其实际值均在置信度为97%的置信区间内,与实际情况相符,这说明采用该方法可以得出瓦斯涌出量预测结果的概率分布,且具有预测精度高、所需支持向量少的优点。  相似文献   

9.
付华  訾海 《计算机应用》2015,35(1):289-293
针对瓦斯涌出量的多影响因素预测问题,提出一种最小二乘支持向量机(LS-SVM)回归算法与卡尔曼滤波耦合的动态预测方法.该方法依据预测残差方差比检验策略确定自适应的动态训练样本集以取代固定的训练样本集.LS-SVM辨识网络对瓦斯涌出量的相关因素进行非线性映射并提取出最佳维数的状态向量以建立基于卡尔曼滤波最优估计的瓦斯涌出量预测模型.利用矿井监测到的各项历史数据进行实验.结果表明,该模型的预测平均相对误差为2.17%,平均相对变动值ARV为0.008873,相比单一的神经网络或支持向量机预测模型,具有更高的预测精度与更强的泛化能力.  相似文献   

10.
基于灰色神经网络算法的煤矿瓦斯涌出量预测模型的研究   总被引:2,自引:0,他引:2  
文章提出了一种采用灰色神经网络对煤矿瓦斯涌出量进行预测的方法,并在此基础上详细介绍了灰色神经网络瓦斯预测模型的构建过程,给出了应用实例。仿真结果表明,该模型具有预测精度高、所需样本少、计算简便等优点。  相似文献   

11.
为了提高煤矿瓦斯涌出量的预测精度,针对煤矿瓦斯涌出量的训练样本选择问题,提出一种基于合理遗忘训练样本的煤矿瓦斯涌出量预测模型。首先通过引入遗忘因子既考虑了历史数据的影响,又突出了新数据的作用,然后最小二乘支持向量机建立煤矿瓦斯涌出量预测模型,最后进行了仿真分析。结果表明,该模型提高了煤矿瓦斯涌出量的建模效率,获得了更加理想的煤矿瓦斯涌出量预测结果。  相似文献   

12.
为准确、快速地预测回采工作面瓦斯涌出量,提出一种基于主成分分析法(PCA)和改进的果蝇算法(MFOA)优化支持向量机(SVM)的回采工作面绝对瓦斯涌出量预测模型。模型首先运用PCA方法对原始数据进行降维处理,消除数据冗余,而后采用改进的果蝇算法对SVM参数进行全局寻优,避免SVM参数的选取对模型预测结果的不利影响,最终建立基于PCA-MFOA-SVM的耦合预测模型,并以实际监测数据为例进行仿真预测。结果表明:该模型预测的平均绝对误差为0.077 5 m3/t,平均相对误差为1.323 7%,与其他模型相比,预测精度高,综合性能好,能够实现回采工作面瓦斯涌出量的动态预测。  相似文献   

13.
进行瓦斯涌出量预测是保障安全生产的一个很重要步骤。由于瓦斯涌出量的非线性、不确定性,其预测是很复杂的一个问题。提出一种新的RGASVR智能模型,即基于实值遗传算法参数优选的支持向量回归模型,并且将提出的模型应用于瓦斯涌出量预测。实验结果表明,所提出的模型比BP神经网络、标准支持向量回归有更高的预测精度,具有较强的实用价值。  相似文献   

14.
针对瓦斯涌出量受多因素影响,传统的预测方法难以建立准确的数学模型,导致预测精度低这一问题。提出一种经改进的粒子群算法(MPSO)优化的基于柯西分布加权的最小二乘支持向量机(CWLS-SVM)算法来预测非线性动态瓦斯涌出量。柯西分布加权的最小二乘支持向量机根据预测误差的统计特性,确定加权规则参数,以达到赋予训练样本不同权值的目的。并用MPSO算法对CWLS-SVM模型的正则化参数λ和高斯核参数σ寻优。利用无线传感器网络采集到的各项历史数据进行实例分析。结果表明,该算法有效的提高了瓦斯涌出量的预测精度,降低了预测误差,为煤矿瓦斯防治提供理论支持。  相似文献   

15.
王雨虹  付华  侯福营  张洋 《计算机应用》2014,34(11):3348-3352
为提高回采工作面绝对瓦斯涌出量预测的精度和效率,提出了将混沌免疫粒子群优化(CIPSO)算法与广义回归神经网络(GRNN)相耦合的绝对瓦斯涌出量预测模型。该方法采用CIPSO对GRNN的光滑因子进行动态优化调整,减少了人为因素对GRNN网络输出结果的影响,并采用优化后的网络建立瓦斯涌出量预测模型。通过对某煤矿瓦斯涌出量数据的仿真实验结果表明:基于CIPSO-GRNN的回采工作面绝对瓦斯涌出量模型比BP神经网络、Elman网络预测模型具有更好的预测精度和收敛速度,证明了该方法的有效性和可行性。  相似文献   

16.
基于径向基的瓦斯涌出量灰色预测模型   总被引:1,自引:0,他引:1  
为了进一步预防煤层瓦斯突出,实现准确、快速预测煤矿瓦斯涌出量的大小,首先采用1-AGO对样本数据进行处理,建立灰色(GM)预测模型,再利用径向基(RBF)神经网络对灰色预测模型结果进行预测,以作为其最终的预测值;采用阜新煤矿某工作面瓦斯涌出量的历史数据进行建模,实验结果表明,GM-RBF组合模型在预测精度及训练误差方面均优于单一的GM模型和RBF神经网络预测模型;算法计算简便,减弱了数据的随机性及模型误差,煤矿瓦斯涌出量的预测平均误差减小到1.57%。  相似文献   

17.
针对瓦斯涌出量数据具有非线性、周期性的特点和实际场景下不同特征因素与瓦斯涌出量关联程度不同导致预测精度低的问题,提出一种基于完备经验模态分解和双重注意力机制的瓦斯涌出量预测模型。通过CEEMDAN方法将瓦斯涌出量数据分解为频率不同的分量,以降低非线性数据的预测难度;再计算特征注意力机制中计算各特征因素的权重,挖掘当前分量与各个特征之间的关联关系;基于门控循环单元的时序注意力机制量化历史隐藏状态对当前状态的影响,提高长时间序列预测的准确度。通过相加重构得到最终预测结果。基于陕西某矿瓦斯涌出量数据进行预测实验,所提出模型的平均绝对百分比误差为1.65%,均小于DA-GRU、GRU和SVM等对比模型,验证了该模型的有效性。  相似文献   

18.
瓦斯涌出量的混合pi-sigma模糊神经网络预测模型   总被引:1,自引:0,他引:1  
提出了一种利用混合pi-sigma模糊神经推理方法建立瓦斯涌出量的预测模型。该模型采用高斯基函数作为模糊子集的隶属度函数, 可在线动态调整隶属度函数和结论参数。与神经网络预测模型比较, 该模型具有物理意义明确、原理清晰、收敛速度快、预测精度高等特点,在对某矿瓦斯涌出量数据的仿真结果表明,该方法预测准确度高、速度快,并且结果具有可重复性,证明该方法是有效的。为便于工程实际应用, 在Matlab环境中开发了基于图形用户界面(GUI)的仿真应用界面,给出了使用方法和预测结果。实验同时表明,对所采用的数据,模型的训练精度设置为0.001时网络的泛化能力最好,网络训练精度和预测精度之间不具有正比关系。  相似文献   

19.
郁云  杜杰  陆金桂 《计算机仿真》2006,23(8):146-148
由于影响瓦斯涌出量的因素很多并且它们之间存在着复杂的非线性关系,用传统方法很难对其进行准确预测,神经网络算法简单,学习收敛速度快,具有线性、非线性逼近精度高等特性,适合对瓦斯涌出量进行建模,针对对波动性较大的数据预测结果不理想的问题,在对监测数据分析的基础上,提出了用数据预处理的方法弱化数据波动性,然后进行神经网络建模的瓦斯涌出量预测模型,试验证明取得到了比较理想的结果。  相似文献   

20.
针对煤矿瓦斯涌出量的多影响因素预测问题,以多传感器的瓦斯监测系统采集处理后的数据作为样本,提出了一种自组织特征映射神经网络(Self-organizing Feature Maps,SOM)与多变量的径向基函数(Radial Basis Function,RBF)结合的组合人工神经网络的模型动态预测新方法。采用先聚类、再分类建模和预测的方法,解决了由于训练样本有限和训练样本点分散所导致的预测精度降低的问题,并通过矿井监测到的各项历史数据进行试验。结果表明,与其他预测模型相比较,该模型的预测精度更高,泛化能力更强。预测平均相对误差为2.16%,均相对变动值ARV为0.0059,均方根误差RMSE为0.1311,有效地实现了对煤矿绝对瓦斯涌出量的动态预测,有较高的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号