首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2019,45(14):16911-16917
This work presents the structural, morphological and luminescent, properties of SrGe4O9 (SGO):Er3+,Yb3+ phosphors. These phosphors were synthesized by simple combustion synthesis and subsequently annealed at 1100 °C. The XRD patterns revealed that all the SGO samples doped with Yb3+ concentrations from 2 to 10 at.% presented a trigonal pure phase (the Er3+ concentration was fixed to 1 at.%). The morphology of the SGO samples was analyzed by scanning electron microscopy and found that they are formed by microparticles with irregular shapes and average sizes in the range of 0.2 μm–3 μm. The luminescence measurements of the SGO:Er3+,Yb3+ samples showed the presence of two main emission bands at 551 nm (green) and at 662 nm (red) under excitation at 980 nm, which are associated to Er3+ transitions. For Yb concentration of 2 and 3 at.% the green band dominated, but the red band became more intense for Yb concentrations above 5 at.%. As result, the CIE coordinate changed from the green to the yellow region. The increase for the Yb content from 2 to 10 at.% also enhanced of the NIR emission of Er3+ ≈5 times and the maximum upconversion emission was observed for 8% of Yb concentration. Further, the surface of the SGO samples was analyzed by the FTIR technique in order to find OH groups which are common luminescent quenching centers, but these groups were not detected on the samples. Since the SGO samples presented tunable emission, absence of OH groups on their surface and stable crystalline structure for high Yb dopant concentrations, they could be good candidates as phosphors for solid state lighting or displays applications.  相似文献   

2.
Nanoparticles of Yb, Er codoped calcium fluoride were obtained by a co-precipitation method. Scanning electron microscope (SEM) and X-ray powder diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grains size around 30–50 nm. Yb, Er:CaF2 transparent ceramics were fabricated by hot pressing (HP) the nanoparticles at a temperature of 800 °C in a vacuum environment. For a 2 mm thickness ceramic sample, the transmittance at 1200 nm reached about 83%. Microstructures were characterized using SEM analysis, and the average grain size was about 700 nm. Grain boundaries of the ceramic sample were clean and no impurities were detected. The absorption, upconversion and infrared emission spectra of transparent ceramic sample under 978 nm excitation were measured and discussed.  相似文献   

3.
Lu3+/Yb3+ and Lu3+/Er3+ co-doped Sb2Se3 nanomaterials were synthesized by co-reduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the LnxLnxSb2−2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x = 0.00 − 0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). Scanning electron microscopy and transmission electron microscopy images show that co-doping of Lu3+/Yb3+ ions in the lattice of Sb2Se3 produces nanorods, while that in Lu3+/Er3+ produces nanoparticles, respectively. The electrical conductivity of co-doped Sb2Se3 is higher than that of the pure Sb2Se3 and increases with temperature. By increasing the concentration of Ln3+ions, the absorption spectrum of Sb2Se3 shows red shifts and some intensity changes. In addition to the characteristic red emission peaks of Sb2Se3, emission spectra of co-doped materials show other emission bands originating from f-f transitions of the Yb3+ ions.  相似文献   

4.
5at.% Yb:Lu2O3 transparent ceramics were fabricated successfully by vacuum sintering along with hot isostatic pressing posttreatment from the nanopowders. The influences of calcination temperature on morphology and microstructures of powders and ceramics were studied systematically. The optimal ceramic sample from the nanopowder calcined at 1050°C shows uniform and dense microstructure with the in-line transmittance of 81.5% at 1100 nm. The results of the thermal measurements, that is, thermal conductivity and specific heat, were related to the changes occurring in the microstructure of the ceramics studied. It was shown on this basis that appropriate control of the technological process of sintering ceramics makes it possible to obtain laser ceramics with very good thermal properties as well as maintaining their high optical quality. Concerning the laser performance, the highest-optical quality 5at.% Yb:Lu2O3 sample was pumped in quasi-continuous wave conditions measuring a maximum output power of 2.59 W with a corresponding slope efficiency of 32.4%.  相似文献   

5.
《Ceramics International》2017,43(10):7889-7894
Magnetic cobalt ferrite (CoFe2O4) nanocrystals were synthesized via the hydrothermal method and the crystallite size was measured using Sherrer's equation. Instrumental broadening was a significant parameter for determining crystallite size. The effect of annealing time and calcination on crystallite size and magnetic properties was discussed. It was found that the coercivity was highly dependent on the crystallite size. As the crystallite size increased from 61 to 68.2 nm, room temperature coercivity increased from 1488 Oe to 1700 Oe, while high coercivity (5.2 kOe) was achieved at lower temperature (80 K). It was found that the presence of hematite could affect the crystallite size after calcination.  相似文献   

6.
The asymmetric hexagonal Sr5(PO4)3F (S-FAP) crystal material is considered to be the most suitable solid state laser gain medium for small laser diode pumping in the future due to its large absorption, emission interface, and long fluorescence lifetime. However, the mediocre optical transmittance of S-FAP transparent ceramics and the degradation of luminescence properties due to the doping of Yb activated ions seriously hinder its application prospects. In view of this, a series of 0.02Yb, xLu: S-FAP (x = 0–0.02) transparent ceramics with excellent optical properties were synthesized by hot pressing sintering. The powder SEM results show that Lu doping has no obvious effect on the morphology, grain size, and dispersion of powder. The linear transmissivity curves show that the ultraviolet (200 nm) and visible (500 nm) transmissivity increase by 54 % and 17 %, respectively, with Lu doping compared with the undoped ceramic samples. The surface SEM of ceramics revealed that Lu3+ promoted the increase of ceramic grain size significantly. The emission spectrum and fluorescence decay curves at room temperature also show that the emission intensity and fluorescence lifetime of ceramic samples increase significantly with Lu co-doping.  相似文献   

7.
We present a comparative study of two Lu-based oxide ceramics doped with Yb3+ ions, namely Yb:Lu3Al5O12 (garnet) and Yb:Lu2O3 (sesquioxide), promising for thin-disk lasers. The ceramics are fabricated using nanopowders of 3.6 at.% Yb:Lu2O3 and Al2O3 produced by laser ablation: Yb:Lu3Al5O12 – by vacuum sintering at 1800 °C for 5 h with the addition of 1 wt% TEOS as a sintering aid, and Yb:Lu2O3 – by vacuum pre-sintering at 1250 °C for 2 h followed by Hot Isostatic Pressing at 1400 °C for 2 h under Ar gas pressure of 207 MPa. The comparison includes the structure, Raman spectra, transmission, optical spectroscopy and laser operation. The crystal-field splitting of Yb3+ multiplets is revealed for Lu3Al5O12. A continuous-wave (CW) Yb:Lu3Al5O12 ceramic microchip laser generates 5.65 W at 1031.1 nm with a slope efficiency of 67.2%. In the quasi-CW regime, the peak power is scaled up to 8.83 W. The power scaling for the Yb:Lu2O3 ceramic laser is limited by losses originating from residual coloration and inferior thermal behavior.  相似文献   

8.
《Ceramics International》2023,49(1):413-418
This paper presents experimental results of the structural, morphological, and luminescence characterization of Eu3+ doped BaZrO3 powders produced by the green synthesis method. The highly crystalized cubic structure perovskite powders of the formula BaZrO3 were synthesized by the chemical hydrothermal method. The phase of the compound and the average particle size were determined using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Powder samples were characterized also by photoluminescence (PL) and thermoluminescence (TL) techniques. Results showed that BaZrO3 crystallizes in its perovskite cubic phase, with a crystal size circa 40 nm. The presence of each element of the compound was confirmed by the energy disperse spectroscopy (EDS) technique. The PL emission spectra, at room temperature, were obtained using 395 nm as excitation wavelength. The spectra showed the characteristic emissions of Eu3+ ion. The intensity of the PL emission spectra varies with the Eu3+ concentration and shows a maximum luminescence efficiency when the synthesis of BaZrO3 was performed using a content of 5 mol% Eu³?. The thermoluminescence data shows that at the heating rate of 10 °C/s, BaZrO3:Eu3+ doped with 5% of dopant concentration exhibits two TL peaks: first of them rapidly decaying peaks at about 110 °C and a high sensitivity peak at 235 °C TL. The correlation between luminescence intensity and concentration quenching of the prepared phosphor was investigated. Present findings substantiate the ability of the BaZrO3 nanopowder sample to be a promising candidate for luminescence applications.  相似文献   

9.
Y2O3 is regarded as one of the potential environmental barrier coating (EBC) materials for Al2O3f/Al2O3 ceramic matrix composites owing to its high melting poin...  相似文献   

10.
This paper reports the luminescent response upconversion of zirconium oxide (ZrO2) nanoparticles doped with erbium (Er3+) and ytterbium (Yb3+) ions, synthesized by hydrothermal route. X ray diffraction (DRX) showed that the synthesized material presents the face centered cubic (FCC) structure. High resolution transmission electron microscopy (HRTEM) showed the presence of crystals size smaller than 10 nm. The photoluminescent analysis allowed to observe an intense upconversion luminescence emission of the samples doped with both ions Er3+ and Yb3+, when these are excited with 910 nm laser source, showing the electronic transitions 4F9/24I5/2; 2H11/24I5/2; 4S3/24I15/2 of Er3+. Two decay times were observed, whose behavior can be associated to the average distance between erbium ions within the nanocrystals.  相似文献   

11.
《Ceramics International》2022,48(3):3051-3058
Contactless optical thermometers have attracted extensive attentions for applications in scientific research and technological fields due to their apparent advantages. Herein, a novel sequence of Ba3-xSrxLu4O9 (B3-xSxLO):Er3+/Yb3+ phosphors were successfully prepared to investigate the temperature sensing property. By establishing energy transfer from Yb3+ to Er3+ and regulating the local lattice environment, up-conversion luminescence of Er3+ is dramatically improved when excited by 980 nm laser. This can effectively promote signal-noise ratio and reduce the errors in temperature detection. Furthermore, a multi-mode optical thermometry, which includes the fluorescence intensity ratio (FIR) from two thermally coupled levels of 2H11/2/4S3/2, FIR based on non-thermally coupled system of 2H11/2/4F9/2 and fluorescence lifetime of 4S3/2 state of Er3+, was explored systematically. The fabricated samples exhibit the superior temperature measurement performances containing wide temperature-sensing range, superior signal discriminability, high sensitivity and favorable repeatability, indicative of the enormous utilization prospects of B3-xSxLO:Er3+/Yb3+ for thermometry.  相似文献   

12.
《Ceramics International》2016,42(12):13990-13995
A series of Yb3+/Er3+ codoped transparent oxyfluoride glass ceramics with various amounts of Yb3+ have been successfully fabricated and characterized. Under 980 nm laser prompting, the samples produce intense red, green and blue up-conversion emissions, and the emission intensities increase with Yb3+ concentration and heat treatment temperature. Before losing good transparency in the visible region, optimum emission intensities are obtained for the sample with 25 mol% of Yb3+ at a heat treatment temperature of 680 °C. A possible up-conversion mechanism is proposed from the dependence of emission intensities on pumping power. The fluorescence intensity ratio between the two thermally coupled levels 2H11/2 versus 4S3/2 was measured with the laser output power of 57 mW to avoid the possible laser induced heating effect. The fluorescence intensity ratio values in the temperature range from 295 K to 723 K can be well fitted with the equation: A exp (−∆E/kBT), where A = 6.79 and ∆E=876 cm−1. The relative temperature sensitivity at 300 K was evaluated to be 1.4% K−1. All the results suggest that the Yb3+/Er3+ codoped CaF2 glass ceramics is an efficient up-conversion material with potential in optical fiber temperature sensing.  相似文献   

13.
Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.  相似文献   

14.
《Ceramics International》2023,49(13):21634-21644
A series of 16 mol% CeO2-2 mol% Re2O3 co-stabilised zirconia (ZrO2) (16Ce4ReSZ, ReEu, Gd, Dy, Y, Er, Yb) ceramic materials were synthesised using a chemical coprecipitation– high-temperature roasting method. Their phase structure, high-temperature phase stability, mechanical properties, thermal conductivity and coefficient of thermal expansion (CTE) were investigated. The results show that the ZrO2 tetragonal phase co-stabilised by CeO2 and Re3+ with a smaller radius has better stability. The 16Ce4ReSZ (ReDy, Y, Er, Yb) materials have high fracture toughnesses, low thermal conductivities, and high CTE values. As the radius of the Re3+ ions decreases, the lattice energy increased, while the lattice distortion decreases, the CTE decreases slightly and the thermal conductivity of the material increases slightly. Owing to the high phase stability of 16Ce4YbSZ, its mechanical properties are best after 100 h of sintering at 1400 °C.  相似文献   

15.
Raw SrF2 powders were synthesized by the chemical precipitation method, and the mean particle size was 58.48 nm. Er:SrF2 transparent ceramics were obtained by hot-pressed (HP) technique, and the effect of ErF3 levels on the transparency, microstructure, luminescence spectroscopic and microhardness were studied. The ratio of emission intensities R (Red/Green) increased with the ErF3 doping levels. The addition of ErF3 was found effectively to reduce grain size and has a positive effect on improving the microhardness. The SrF2 ceramic doped with 5 wt.% ErF3 (2 mm thick) showed the best optical transparency, the transmittance at 500 nm and 1200 nm are 87.9 % and 89.5 %, respectively. The average grain size, Vickers hardness (Hv), and fracture toughness (KIC) for the SrF2 ceramic were 21.1 ± 4.5 μm, 1.73 ± 0.04 GPa, and 0.52 ± 0.08 MPa·m1/2, respectively.  相似文献   

16.
Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors were synthesized through high temperature solid state method. Under 980 nm laser excitation, the Lu2W2.5Mo0.5O12: Er3+/Yb3+ compounds show thermal enhancement of up-conversion luminescence (UCL), which is attributed to the lattice contraction and distortion from negative thermal expansion (NTE) of Lu2W2.5Mo0.5O12 host enhancing the energy transfer of Yb3+ to Er3+, eliminating the energy transfer of Er3+ to Er3+ through Er3+ single-doped Lu2W2.5Mo0.5O12 phosphors without thermal enhancement of UCL. The green luminescence intensities at 693 K of the Lu1.98-xW2.5Mo0.5O12: 0.02Er3+, xYb3+ (x = 0.2, 0.3, 0.4) samples are 4.6, 4.3 and 7.0 times as that of 302 K, respectively. And through fluorescence intensity ratio (FIR) technique, the corresponding maximum absolute sensitivities are 0.00741, 0.00744 and 0.00723, respectively. The green monochromaticity of UCL spectra in Er3+/Yb3+ co-doped samples increase with the increasing of temperature, and the possible UCL mechanism with temperature was discussed. The results indicate that the Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors can be applied at a high temperature as optical thermometer with a good green monochromaticity.  相似文献   

17.
采用冷等静压-真空烧结技术制备尺寸为?10 mm×l mm的Er:(Yb1–xLax)2O3陶瓷。通过分析粉体的X射线衍射谱和陶瓷的扫描电子显微镜照片,确定陶瓷制备条件为:在1 750℃烧结20 h和在1 450℃退火20 h。陶瓷样品在可见光波段透过率为50%左右,在近红外波段透过率最高达到82%。测试了陶瓷的吸收光谱、发射光谱和上转换发射光谱,并探讨了上转换发光机制。结果表明:陶瓷在977 nm处有强吸收,发射最强峰在1 545 nm处,上转换发出较强的绿光(542 nm)和蓝光(484 nm)。  相似文献   

18.
Fifteen kinds of sodium rare earth silicate glasses and ceramics with (Na2O)35.7(RE2O3)7.2(SiO2)57.1 (RE = Y, Sm, Gd, Dy, Ho, Er and Yb) composition were synthesized from a mixture of Na2CO3, RE2O3 and SiO2. The densities of the glasses were in fairly good agreement with the theoretical densities and were 0.2–0.41 g cm−3 larger than those of the polycrystalline ceramics. The conductivities of the glasses are 1–2 orders lower than those of the ceramics and the highest electrical conductivity was achieved for the Yb ceramic sample with the smallest ion radius of RE3+. The electromotive force, EMF, of the potentiometric CO2 gas sensors using (Na2O)35.7(Y2O3)7.2(SiO2)57.1 glass and ceramic increased linearly with an increase in the logarithm of CO2 partial pressure, in accordance with Nernst's law. It was suggested from the slope of Nernst's equation that the two electron-transfer reaction associated with the carbon dioxide molecule takes place at the detection electrode above 450 °C.  相似文献   

19.
《Ceramics International》2022,48(11):15832-15838
Development of novel materials with advanced properties is one of the main research directions of chemistry. New substances are not only crucial for many current technological applications but also should satisfy the needs of tomorrow. Industry often requires reliable, economically effective methods that can provide high quality reproducible results. Here we propose an inexpensive synthesis method that is suitable for synthesis of many types of particles. In this work we focused on Gd2O3:Tm3+, Er3+, Nd3+ particles with luminescence and magnetic properties. Based on the analysis of morphology, structural and optical properties of particles prepared by the standard Pechini methods and its variations, we found that the method with K2CO3 as additive yields particles with smaller sizes (down to tens of nm), higher crystallinity, and up to 1.7 times increased luminescence intensity. We also demonstrate that the unique combination of the particles’ characteristics, for example, the intensity ratio of the luminescent bands corresponding to different REI and the mass susceptibility, strongly depends on the composition, synthesis method, and structure. The variety of the combination of the properties makes these particles a promising candidate for safety markers applications.  相似文献   

20.
《Ceramics International》2017,43(18):16270-16275
Selective emitters for thermophotovoltaic systems consisting of directionally solidified Al2O3-ME3Al5O12 (ME: Y, Er and Yb) eutectic coatings on Al2O3 substrates were produced and characterizated. Coatings were deposited by dip-coating on cylindrical substrates. After sintering, a continuous-wave CO2 laser was used to produce the surface resolidification. The optimization of the processing parameters yielded dense eutectic coatings with good adhesion to the substrate and with 90–200 µm in thickness. All coatings were free of voids and showed a eutectic microstructure consisting of a three dimensional interpenetrated network of Al2O3 and ME3Al5O12. The mechanical properties of the coatings (hardness and fracture toughness) were evaluated by indentation techniques. Thermal emission was studied by heating the rods with a CO2 laser at temperatures between 1000 and 1400 °C. Selective emission was observed in Er3+ and Yb3+ based coatings and attributed to the electronic transitions of the rare earth ions. Er3+-coatings showed the best emission properties as selective emitters for thermophotovoltaic converters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号