首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To enhance the absorption rate for CO2 and SO2, aqueous ammonia (NH3) solution was added to an aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The simultaneous absorption rates of AMP and a blend of AMP+ NH3 for CO2 and SO2 were measured by using a stirred-cell reactor at 303 K. The process operating parameters of interest in this study were the solvent and concentration, and the partial pressures of CO2 and SO2. As a result, the addition of NH3 solution into aqueous AMP solution increased the reaction rate constants of CO2 and SO2 by 144 and 109%, respectively, compared to that of AMP solution alone. The simultaneous absorption rate of CO2/SO2 on the addition of 1 wt% NH3 into 10 wt% AMP at a p A1 of 15 kPa and p A2 of 1 kPa was 5.50×10−6 kmol m−2 s−1, with an increase of 15.5% compared to 10 wt% AMP alone. Consequently, the addition of NH3 solution into an aqueous AMP solution would be expected to be an excellent absorbent for the simultaneous removal of CO2/SO2 from the composition of flue gas emitted from thermoelectric power plants.  相似文献   

2.
Although aqueous ammonia solution has been focused on the removal of CO2 from flue gas, there have been very few reports regarding the underlying analysis of the reaction between CO2 and NH3. In this work, we explored the reaction of CO2-NH3-H2O system at various operating temperatures: 40 °C, 20 °C, and 5 °C. The CO2 removal efficiency and the loss of ammonia were influenced by the operating temperatures. Also, infrared spectroscopy measurement was used in order to understand the formation mechanism of ion species in absorbent, such as NH2COO, HCO3, CO32−, and NH4+, during CO2, NH3, and H2O reaction. The reactions of CO2-NH3-H2O system at 20 °C and 40 °C have similar reaction routes. However, a different reaction route was observed at 5 °C compared to the other operating temperatures, showing the solid products of ammonium bicarbonates, relatively. The CO2 removal efficiency and the formation of carbamate and bicarbonate were strongly influenced by the operating temperatures. In particular, the analysis of the formation carbamate and bicarbonate by infrared spectroscopy measurement provides useful information on the reaction mechanism of CO2 in an aqueous ammonia solution.  相似文献   

3.
To improve the stability of CaO adsorption capacity for CO2 capture during multiple carbonation/calcination cycles, modified CaO-based sorbents were synthesized by sol-gel-combustion-synthesis (SGCS) method and wet physical mixing method, respectively, to overcome the problem of loss-in-capacity of CaO-based sorbents. The cyclic CaO adsorption capacity of the sorbents as well as the effect of the addition of La2O3 or Ca12Al14O33 was investigated in a fixed-bed reactor. The transient phase change and microstructure were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FSEM), respectively. The experimental results indicate that La2O3 played an active role in the carbonation/calcination reactions. When the sorbents were made by wet physical mixing method, CaO/Ca12Al14O33 was much better than CaO/La2O3 in cyclic CO2 capture performance. When the sorbents were made by SGCS method, the synthetic CaO/La2O3 sorbent provided the best performance of a carbonation conversion of up to 93% and an adsorption capacity of up to 0.58 g-CO2/g-sorbent after 11 cycles.  相似文献   

4.
The effects of elevated atmospheric CO2 concentration on N2O fluxes, instant CO2 exchange and the biomass production of timothy (Phleum pratense) were studied in the laboratory. Three sets of 12 farmed sandy soil mesocosms sown with Phleum pratense were fertilised with a commercial fertiliser in order to add 5, 10 and 15 g N m−2, and equally distributed in four thermo-controlled greenhouses. In two of the greenhouses, the CO2 concentration was kept at atmospheric concentration (360 μmol mol−1), and in the other two at double the ambient concentration (720 μmol mol−1). Forage was harvested and the plants fertilised twice during the N2O measurements. This was followed by an extra fertilisation and harvesting. After the third harvest, the growth of P. pratense was maintained at a height of 18 cm for measurements of instant CO2 exchange, performed in two growth chambers. N2O exchange was monitored using a closed chamber technique and a gas chromatograph. Instant CO2 exchange was monitored using an infrared gas analyser. N2O was emitted from the soil in the low, moderate and high N treatments at both CO2 concentrations when the moisture content was low, the N2O probably being mainly derived from nitrification. The highest flux (3303 μg N2O m−2 h−1) occurred in the highest N treatment before thinning the stand of P. pratense under elevated CO2 concentration. P. pratense was acclimated to the elevated CO2 concentration: the NEE and P G of the elevated growth of P. pratense decreased, in contrast to the fluxes of the normal ambient growth, when measured at the changed CO2 concentration (ambient). The rate of respiration (R TOT) in the agroecosystem did not increase due to the elevated CO2 concentration, but instead the results indicated decreased R TOT (on average 2049 and 1808 mg CO2 m−2 h−1 at ambient and elevated CO2 concentration, respectively) when there was an abundant N supply. This infers the possibility of enhanced C accumulation in agriculture mineral soil via P. pratense under an increased atmospheric CO2 supply.  相似文献   

5.
CO2 methanation over supported ruthenium catalysts is considered to be a promising process for carbon capture and utilization and power-to-gas technologies. In this work 4% Ru/Al2O3 catalyst was synthesized by impregnation of the support with an aqueous solution of Ru(OH)Cl3, followed by liquid phase reduction using NaBH4 and gas phase activation using the stoichiometric mixture of CO2 and H2 (1:4). Kinetics of CO2 methanation reaction over the Ru/Al2O3 catalyst was studied in a perfectly mixed reactor at temperatures from 200 to 300 °C. The results showed that dependence of the specific activity of the catalyst on temperature followed the Arrhenius law. CO2 conversion to methane was shown to depend on temperature, water vapor pressure and CO2:H2 ratio in the gas mixture. The Ru/Al2O3 catalyst was later tested together with the K2CO3/Al2O3 composite sorbent in the novel direct air capture/methanation process, which combined in one reactor consecutive steps of CO2 adsorption from the air at room temperature and CO2 desorption/methanation in H2 flow at 300 or 350 °C. It was demonstrated that the amount of desorbed CO2 was practically the same for both temperatures used, while the total conversion of carbon dioxide to methane was 94.2–94.6% at 300 °C and 96.1–96.5% at 350 °C.  相似文献   

6.
CaO carbonation with CO2 is potentially a very important reaction for CO2 removal from exhaust gas produced in power plants and other metallurgical plants and for hydrogen production by promoting water gas shift reaction in fossil fuel gasification. A mathematical model based on the grain model was applied for modeling of this reaction. Diffusion of gaseous phase through the product layer and structural change of the grains were considered in the model. The modeling results show that ignoring the reaction kinetics controlling regime in the early stage of the reaction and replacing it with a regime considering both the reaction kinetics and diffusion can generate good simulation results. The frequency factor of the reaction rate equation and the diffusivity of CO2 through the CaCO3 layer were justified to get the best fit at different temperature range from 400 to 750 °C with respect to experimental data in the literature. The mathematical model switches to a pure diffusion controlling regime at final stage of reaction.  相似文献   

7.
Fractionation by supercritical carbon dioxide (SC−CO2) might be a way to purify used frying oils, since a selective separation of the oil components based on their polarity and M.W. can be attained. In this work, we studied the purification of peanut oil used for frying by SC−CO2 continuous fractionation in a packed column. The influence of pressure (15–35 MPa) and temperature (25–55°C) on the yield and on the composition of products was determined. The composition of the top and bottom products was evaluated by using size-exclusion chromatography and other accepted chemical methods. Process conditions were selected to separate TG from degraded compounds. Experimental results indicated that the operating conditions leading to maximal TG recovery in the extract were 35 MPa, 55°C, and a solvent-to-feed ratio of 53. By operating at these conditions, it was possible to recover 97% of the TG placed on the column and about 52% by weight of the used frying oil. The composition of the purified top stream was very similar to that of fresh frying oil.  相似文献   

8.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

9.
基于Li2CO3与CO2在水溶液中的反应,在浆态鼓泡床反应器内对粗Li2CO3常压鼓泡碳化反应的动力学进行了实验研究,且对影响碳化过程的诸因素进行了深入的研究和探讨.结果表明,Li2CO3的转化率随表观气速的增大而增大,随反应温度、固体质量浓度、颗粒粒径、反应器中浆料填充度的增大而减小.动力学研究表明:在反应的前期过程受控于化学反应,随反应的进行该过程逐渐转变为内扩散控制.通过对实验数据的拟合得出了实验范围内过程的宏观动力学方程.该研究为Li2CO3碳化工艺条件的优化和反应器的放大设计等提供了基础效据.  相似文献   

10.
ETS-10 was ion exchanged by various alkali cations (Li+, Na+, K+, Rb+ and Cs+) and the BET surface area and pore volume was exactly consistent with cationic size; that is, in the order of Li+ > Na+ > K+ > Rb+ > Cs+. It was observed that a single point adsorption capacity was inversely proportional to cationic size. The largest CO2 capacity was observed for Li+-ETS-10 and it is attributed to greater cation–quadrupole interactions with CO2 than larger cation. The results also suggests that as the CO2 loading is increased, the accessibility of adsorbing CO2 to framework basic O sites should have become difficult with the increase in cationic size due to the blocking effect by extra-framework CO2-M+. The slight decrease in the slope of adsorption capacity with temperature, especially beyond 373 K for Li+-ETS-10 and K+-ETS-10 suggests that the adsorption of CO2 on small alkali cation exchanged-ETS-10 at high temperature is somewhat associated with basic oxygen anion sites in framework due to the existence of large pore. The CO2-TPD results show that the amount of desorbed CO2 at higher temperature was proportionally increased due to the increased basicity of oxygen anions in framework. It also shows that the desorption temperature associated with alkali cations in extra-framework (corresponding to low temperature desorption peak) has been lowered with the increase in cationic size, indicating weak cation–quadrupole interactions with CO2 for larger cations.  相似文献   

11.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

12.
The electrochemical promotion of the CO2 hydrogenation reaction on porous Rh catalyst–electrodes deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, was investigated under atmospheric total pressure and at temperatures 346–477 °C, combined with kinetic measurements in the temperature range 328–391 °C. Under these conditions CO2 was transformed to CH4 and CO. The CH4 formation rate increased by up to 2.7 times with increasing Rh catalyst potential (electrophobic behavior) while the CO formation rate was increased by up to 1.7 times with decreasing catalyst potential (electrophilic behavior). The observed rate changes were non-faradaic, exceeding the corresponding pumping rate of oxygen ions by up to approximately 210 and 125 times for the CH4 and CO formation reactions, respectively. The observed electrochemical promotion behavior is attributed to the induced, with increasing catalyst potential, preferential formation on the Rh surface of electron donor hydrogenated carbonylic species leading to formation of CH4 and to the decreasing coverage of more electron acceptor carbonylic species resulting in CO formation.  相似文献   

13.
In the present study, we synthesized biodiesel from soybean oil through a transesterification reaction catalyzed by lithium carbonate. Under the optimal reaction conditions of methanol/oil molar ratio 32:1, 12 % (wt/wt oil) catalyst amount, and a reaction temperature of 65 °C for 2 h, there was a 97.2 % conversion to biodiesel from soybean oil. The present study also evaluated the effects of methanol/oil ratio, catalyst amount, and reaction time on conversion. The catalytic activity of solid base catalysts was insensitive to exposure to air prior to use in the transesterification reaction. Results from ICP-OES exhibited non-significant leaching of the Li2CO3 active species into the reaction medium, and reusability of the catalyst was tested successfully in ten subsequent cycles. Free fatty acid in the feedstock for biodiesel production should not be higher than 0.12 % to afford a product that passes the EN biodiesel standard. Product quality, ester content, free glycerol, total glycerol, density, flash point, sulfur content, kinematic viscosity, copper corrosion, cetane number, iodine value, and acid value fulfilled ASTM and EN standards. Commercially available Li2CO3 is suitable for direct use in biodiesel production without further drying or thermal pretreatment, avoiding the usual solid catalyst need for activation at high temperature.  相似文献   

14.
Carbon capture and storage (CCS) technologies are a cornerstone for reducing CO2 emissions from energy and energy-intensive industries. Among the various CCS technologies, solid sorbent looping systems are considered to be potentially promising solutions for reducing CO2 capture energy penalty. We present an evaluation module for a carbonator with sorbent looping cycle to calculate the carbonation efficiency. The module incorporates a simple sorbent activity model, and the solid/gas balances are constructed by assuming simple reactor mixing quality. By conducting simulations, we examine the variation in the carbonation efficiencies as a function of the sorbent looping operation factors and discuss an optimum operating strategy.  相似文献   

15.
利用5 L的气液固三相机械搅拌反应器,研究了Li2CO3碳化三相反应动力学。对影响碳化过程的诸因素进行了深入的研究和探讨。结果表明,Li2CO3的碳化率随CO2压力、气流大小、搅拌速度的增大而增大;随反应温度、固体浓度、颗粒粒径、物料填充度的增大而减小。通过对实验数据的拟合得出实验范围内该过程的动力学方程;得出该过程受控于化学反应,并计算出了该过程的表观活化能-17.37 kJ/mol。该研究为Li2CO3碳化工艺条件的优化和反应器的设计等问题提供了基本理论依据。  相似文献   

16.
Hydrotalcite was synthesized from hydroxide-form precursors to prepare a novel high-temperature CO2 sorbent, and the effect of Mg/Al ratio on CO2 sorption was studied. To enhance the CO2 sorption capacity of the sorbent, K2CO3 was coprecipitated during the synthetic reaction. X-ray diffraction analysis indicated that the prepared samples had a well-defined crystalline hydrotalcite structure, and confirmed that K2CO3 was successfully coprecipitated in the samples. The morphology of the hydrotalcite was confirmed by scanning electron microscopy, and N2 adsorption analysis was used to estimate its surface area and pore volume. In addition, thermogravimetric analysis was used to measure its CO2 sorption capacity, and the results revealed that the Mg: Al: K2CO3 ratio used in the preparation has an optimum value for maximum CO2 sorption capacity.  相似文献   

17.
An efficient design for pressure swing adsorption (PSA) operations is introduced for CO2 capture in the pre-combustion process to improve H2 recovery and CO2 purity at a low energy consumption. The proposed PSA sequence increases the H2 recovery by introducing a purge step which uses a recycle of CO2-rich stream and a pressure equalizing step. The H2 recovery from the syngas can be increased over 98% by providing a sufficient purge flow of 48.8% of the initial syngas feeding rate. The bed size (375m3/(kmol CO2/s)) and the energy consumption for the compression of recycled CO2-rich gas (6 kW/(mol CO2/s)) are much smaller than those of other PSA processes that have a CO2 compression system to increase the product purity and recovery.  相似文献   

18.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

19.
A kinetics model of CO2 hydrogenation over iron-nickel catalysts was developed based on the detailed mechanism of alkenes re-adsorption and secondary reaction. The corresponding kinetical experiments are conducted in a continuous fixed bed reactor. The effect of reaction conditions on catalyst performance was analyzed according to the results of orthogonal experiments. The results of the experiments show that more methane in products can be obtained with iron-nickel catalysts, the trend of which is consistent with the thermodynamic analysis. However, the content of alkenes in products is equivalent with that of alkanes. This shows that the reaction is controlled by kinetics. In all, the results of the experiments also substantiate that the model can give a good representation of the reaction mechanism of CO2 hydrogenation over iron-nickel catalysts. The parameters of this model give a better explanation for the question why the iron-nickel catalysts have a higher selectivity toward alkenes compared with other iron-based catalysts.  相似文献   

20.
To catalytically decompose the greenhouse gas, CO2, spinel structure M-ferrites (M=Co, Ni, Cu, Zn) were synthesized by chemical co-precipitation using metal salts and sodium hydroxide as starting materials. The crystallite size of the newly-prepared M-ferrites increased and the BET surface area decreased with increasing calcination temperature. A thermal analysis of the reduction and reoxidation of M-ferrites indicated that substitution of divalent transition metals (i.e., Cu, Ni and Co) into Fe3O4 improved the reduction kinetics in the order of Cu>Ni>Co. ZnFe2O4 was the most difficult compound to completely reduce due to its stable structure. Commercial samples of the reduced Fe3O4, CoFe2O4 and ZnFe2O4 showed an increase in mass through the reoxidation process, but it was much more difficult for oxygen atoms to enter the structure of the reduced samples of NiFe2O4 and CuFe2O4. The M-ferrites in a batch type reactor showed better efficiency than the commercial Fe3O4. Also found was that CoFe2O4 showed a high regeneration potential, although it required a higher critical reaction temperature. NiFe2O4 and CuFe2O4 were excellent candidate materials for CO2 decomposition at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号