首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Manipulation of electromagnetic waves is essential to various microwave applications, and absorbing devices composed of low-pressure gas discharge tubes and radar-absorbing materials (RAM) can bring new solutions to broadband electromagnetic stealth. The microwave transmission method is used to measure the physical parameters of the plasma unit. The designed structure exhibits superior absorption performance and radar cross-section (RCS) reduction capability in the 2–18 GHz band, with unique absorption advantage in the S and C frequency bands. It is found that the combination of the plasma and the RAM can significantly broaden the absorption frequency band and improve the absorption performance with excellent synergistic stealth capability. Experimental and simulation results present that broadband, wide-angle, tunable electromagnetic wave absorption and RCS reduction can be achieved by adjusting the spatial layout of the combined plasma layer and the type of RAMs, which creates opportunities for microwave transmission and selective stealth of equipment. Therefore, the wave manipulation by combined plasma array and RAM provides a valuable reference for developing numerous applications, including radar antenna stealth, spatial filter, and high power microwave shielding.  相似文献   

2.
The attenuation of electromagnetic(EM) waves in unmagnetized plasma generated by an inductively coupled plasma(ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth.  相似文献   

3.
This paper reports on an experiment designed to test electromagnetic(EM)attenuation by radio-frequency(RF)plasma for cavity structures.A plasma reactor,in the shape of a hollow cylinder,filled with argon gas at low pressure,driven by a RF power source,was produced by wave-transmitting material.The detailed attenuations of EM waves were investigated under different conditions:the incident frequency is 1-4 GHz,the RF power supply is 13.56 MHz and1.6~(-3) k W,and the argon pressure is 75-200 Pa.The experimental results indicate that 5-15 d B return loss can be obtained.From a first estimation,the electron density in the experiment is approximately(1.5-2.2)×1016m~(-3)and the collision frequency is about 11~(-3)0 GHz.The return loss of EM waves was calculated using a finite-difference time-domain(FDTD)method and it was found that it has a similar development with measurement.It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet.  相似文献   

4.
A novel technique based on sub-wavelength plasma structure effects on enhancement of RF communication signals on a receiving antenna is carried out in this paper in laboratory experiments and analyzed by corresponding numerical simulations. Considerable intensification on receiving signal gain up to~10 dB in comparison with that without the plasma modulation is observed experimentally in~1 GHz RF band, with an effective enhancement bandwidth of~340 MHz and the fractional bandwidth of~34%. Then, the optimal modulation parameters of plasma are further studied by a numerical simulation. It is shown that the number density, the layer thickness, and the collision frequency of the plasma, as well as the relative distance between the plasma layer and antenna synergistically affect the modulation. Compared to the metallic antenna with the same overall dimension, the modulated antenna covered by the subwavelength plasma structure features higher receiving efficiency and lower radar cross section in the studied RF band. The mechanism of the reception enhancement is further revealed by analyzing characteristics of electromagnetic scattering and electric field distribution in the subwavelength plasma layer. The results then exhibit scientific significance and application potential of sub-wavelength plasma modulation on compact receiving antennas with higher performance and better feature of radar stealth.  相似文献   

5.
A plasma-based stable,ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.  相似文献   

6.
Some reports presented that the radar cross section(RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome.In simulations, we discussed the scattering of the electromagnetic(EM) wave by a perfect electric conductor(PEC) covered with this plasma screen using the finite-difference-time-domain(FDTD)method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency(RF) power of 5 k W at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna.  相似文献   

7.
This work proposes a new plasma super-phase gradient metasurfaces (PS-PGMs) structure, owing to the limitations of the thin-layer plasma for electromagnetic wave attenuation. Based on the cross-shaped surface unit configuration, we have designed the X-band absorbing structure through the dispersion control method. By setting up the Drude dispersion model in the computer simulation technology, the designed phase gradient metasurfaces structure is superposed over the plasma, and the PS-PGMs structure is constructed. The electromagnetic scattering characteristics of the new structure have been simulated, and the reflectance measurement has been carried out to verify the absorbing effect. The results demonstrate that the attenuation effect of the new structure is superior to that of the pure plasma structure, which invokes an improved attenuation effect from the thin layer plasma, thus enhancing the feasibility of applying the plasma stealth technology to the local stealth of the strong scattering part of a combat aircraft.  相似文献   

8.
In this paper,the ~(90)Sr/~(90)Y coating effects on scattering width(SW) of cylindrical conductor targets are investigated.The electron density distribution of plasma around cylindrical targets of different radiuses is simulated under different radioactivities in normal or oblique incidence.In normal incidence,the SWs are examined as functions of frequency and scattering angle;while in oblique incidence,the SW is inspected as a function of incident angle at the frequency of 1.5 GHz.The results obtained are compared with those from an ideal perfect electric conductor(PEC) cylinder.It is demonstrated that the SW decreases over a wide frequency range in the back scattering region by coating a ~(90)Sr/~(90)Y layer on the cylindrical target.Moreover,the reduction in bi-static SW amplitude can reach 3-20 dB,when the incident angle is smaller than 30° at 1.5 GHz.It is a significant improvement in the stealth effect.  相似文献   

9.
Strip line beam position monitor for HLS LINAC   总被引:2,自引:0,他引:2  
1 Introduction Beam position monitors at HLS LINAC and transfer line will deliver the information about the transverse positions and phases of beam passing by. Typical requirement for position resolution is within 1mm within 1/3 of half aperture rb (rb of HLS LINAC is 25mm). The HLS LINAC BPMs will also serve as beam phase detectors, which require a tough broad-band frequency response and impedance match for the BPMs. Additionally, space available for the BPMs at the HLS LINAC…  相似文献   

10.
为了放大高能粒子物理实验中高精度定时信号,使其适用于开关电容阵列电路的采集范围与幅度,设计高带宽RGC型跨阻前置放大器.此放大器具有低输入阻抗,高带宽,高跨导的特点.采用TSMC 0.25μmCMOS工艺,2.5V单电源供电.仿真结果表明,该前置放大器跨阻增益为5K欧姆,-3dB带宽为953MHz,探测器输入电容在一定范围变化对带宽影响不大.  相似文献   

11.
Electromagnetic interference(EMI) shielding composites with good flexibility and weatherability properties have attracted increased attention. In this study, we combined the surface modification method of sub-atmospheric pressure glow discharge plasma with in situ atmospheric pressure surface dielectric barrier discharge plasma(APSDBD) reduction to prepare polyethylene terephthalate supported silver(Ag/PET). Due to the prominent surface modification of PET film, mild plasma reduction, and effective control of the silver morphology by polyvinylpyrrolidone(PVP), a 3.32 μm thick silver film with ultralow sliver loading(0.022 wt%) exhibited an EMI shielding efficiency(SE) of 39.45 d B at 0.01 GHz and 31.56 d B at 1.0 GHz(30 d B in the range of 0.01–1.0 GHz). The SEM results and EMI shielding analysis indicated that the high performance originated from the synergistic effect of the formation of silver nanoparticles(Ag NPs) with preferentially oriented cell-like surface morphologies and layer-by-layer-like superimposed microstructures inside, which demonstrated strong microwave reflection properties. Fourier transform infrared spectrometer and x-ray diffractometer showed that the surface structures of the heat-sensitive substrate materials were not destroyed by plasma.Additionally, APSDBD technology for preparing Ag/PET had no special requirements on the thickness, dielectric constant, and conductivity of the substrate, which provides an effective strategy for manufacturing metal or alloy films on surfaces of heat-sensitive materials at a relatively low cost.  相似文献   

12.
中国散裂中子源(CSNS)快循环同步加速器(RCS)是强流质子加速器,对环中真空元件的阻抗研究是判断束流能否稳定运行的重要依据。通过正确估算环中元件阻抗,可及时对元件的阻抗进行有效控制和防止束流不稳定性发生,从而减小束流损失。本文利用CST电磁场仿真软件给出了RCS环中高频腔及准直器的耦合阻抗,并探讨了bus-bar结构对高频腔本身及束流稳定的影响,发现需重新设计bus-bar结构使腔固有频率大于10 MHz才能彻底解决因共振可能引起的丢束。此外,计算表明,主准直器屏蔽有利于减小耦合阻抗及损失功率,在安装代价较小的情况下需对主准直器进行屏蔽。  相似文献   

13.
In the spherical pinch scheme, the hot D-T plasma produced in the center of the high pressure spherical vessel is confined by means of imploding shock waves launched from the periphery of the vessel for a time sufficiently long to achieve break-even conditions for plasma fusion. Theoretical studies on spherical pinch made so far have been limited up to the conditions of substantial expansion of the central plasma and the well-defined time delay between the creation of central plasma and the launching of the peripheral shock which led to the conclusion that, in realistic situations of SP experiments, negative time delays should be adopted, i.e., the launching of the imploding shock wave should precede the formation of the central plasma. However, the interaction of converging shock wave with the central plasma causing an additional heating and compression of the central plasma favoring plasma fusion conditions was not taken into account. Starting from the hydrodynamic equations of the system, the proposed simulation code deals with the propagation of converging shock waves and its interaction with the expanding central plasma. Considering the above-mentioned interaction in a self-consistent manner, the temporal evolution of temperature of central plasma is studied. Some results of the numerical simulation on the dynamics of shock wave propagation are also compared with the predictions of point strong explosing theory.  相似文献   

14.
The expectation maximization (EM) algorithm for the maximum likelihood (ML) image reconstruction criterion generates severe checkerboard artifacts in the presence of noise. A classical remedy is to impose an a priori constraint for a penalized ML or maximum a posteriori probability solution. The penalty reduces the checkerboard artifacts and also introduces uncertainty because a priori information is usually unknown in clinic. Recent theoretical investigation reveals that the noise can be divided into two components: one is called null-space noise and the other is range-space noise. The null-space noise can be numerically estimated using filtered backprojection (FBP) algorithm. By the FBP algorithm, the null-space noise annihilates in the reconstruction while the range-space noise propagates into the reconstructed image. The aim of this work is to investigate the relation between the null-space noise and the checkerboard artifacts in the ML-EM reconstruction from noisy projection data. Our study suggests that removing the null-space noise from the projection data could improve the signal-to-noise ratio of the projection data and, therefore, reduce the checkerboard artifacts in the ML-EM reconstructed images. This study reveals an in-depth understanding of the different noise propagations in analytical and iterative image reconstructions, which may be useful to single photon emission computed tomography, where the noise has been a major factor for image degradation. The reduction of the ML-EM checkerboard artifacts by removing the null-space noise avoids the uncertainty of using a priori penalty.  相似文献   

15.
We propose a method of applying a static magnetic field to reduce the attenuation of the magnetic field component(S_H) of low-frequency electromagnetic(LF EM) waves in dense plasma. The principle of this method is to apply a static magnetic field to limit electron movement, thereby increasing the equivalent resistance and thus reducing the induced current and S_H. We consider the static magnetic field acting on the plasma of the entire induced current loop rather than on the local plasma, where the induced current is excited by the magnetic field component of LF EM waves. Analytical expressions of S_H suitable for magnetized cylindrical enveloping plasma are derived by adopting an equivalent circuit approach, by which S_His calculated with respect to various plasma parameter settings. The results show that S_H can be reduced under a static magnetic field and the maximum magnetic field strength that mitigates blackout is less than 0.1 T. Experiments in which LF EM waves propagate in a shock-tubegenerated magnetized cylindrical enveloping plasma are also conducted. S_H measured under the magnetic field(the magnetic field strength B0 acting on the magnetic field probe was about0.06 T) reduces at f=10 MHz and f=30 MHz when n_e≈1.9×10~(13) cm~(-3), which is consistent with theoretical results. The verification of the theory thus suggests that applying a static magnetic field with a weak magnetic field has the potential to improve the transmission capacity of LF EM waves in dense plasma.  相似文献   

16.
In this work,microwaves and terahertz waves have performed a dual-frequency combineddiagnosis in high-temperature,large-scale plasma.According to the attenuation and phase shift of electromagnetic waves in the plasma,the electron density and collision frequency of theplasma can be inversely calculated.However,when the plasma size is large and the electron density is high,the phase shift of the electromagnetic wave is large (multiple times 2π period).Due to the limitations of the test equipment,the true phase shift is difficult to test accurately or to recover reality.That is,there is a problem of phase integer ambiguity.In order to obtain a phase shift of less than 180°,a higher electromagnetic wave frequency (terahertz wave with 890 GHz)is used for diagnosis.However,the attenuation of the terahertz wave diagnosis is too small (less than 0.1 d B),only the electron density can be obtained,and the collision frequency cannot be accurately obtained.Therefore,a combined diagnosis was carried out by combining twofrequencies (microwave with 36 GHz,terahertz wave with 890 GHz) to obtain electron density and collision frequency.The diagnosis result shows that the electron density is in the range of(0.65–1.5)×10~(19)m~(-3),the collision frequency is in the range of 0.65–2 GHz,and the diagnostic accuracy is about 60%.  相似文献   

17.
A bunch-by-bunch beam position measurement (BPM) electronics for High Energy Photon Source (HEPS) storage ring was designed. The hardware of electronics consists of analog signal acquisition board and digital signal processing board. The software consists of underlying firmware and application software. The sampling frequency is 500 MHz, and the bandwidth is 1 GHz. The electronics digitizes four analog signals from BPM probe of storage ring, and obtains the amplitude of beam signal. ZYNQ chip was used to process the beam data and calculate the position of each bunch. Electronics test results in the laboratory is that the nonlinearity of ADC channels is less than 1% when the peak-to-peak value of input signal is less than 1.8 V, and spurious-free dynamic range is about 60 dB. When the sensitivity coefficient is 8.26 mm, the beam position resolution is less than 10 μm. The test results meet the needs of HEPS.  相似文献   

18.
基于高能同步辐射光源(HEPS)储存环,研制了一套逐束团束流位置测量(BPM)电子学系统,电子学的硬件部分由模拟信号采集板卡和数字信号处理板卡组成,软件部分由底层固件和顶层应用软件组成。系统的采样频率为500 MHz,带宽为1 GHz,对来自储存环BPM探头的4路模拟信号进行数字化,得到束团幅度数据,利用ZYNQ芯片计算出每个束团在真空管道中的位置。逐束团BPM电子学在实验室的测试结果为:输入信号峰峰值小于1.8 V时ADC通道非线性度小于1%,无杂散动态范围约60 dB,灵敏度系数取8.26 mm时位置分辨率优于10 μm,测试结果满足HEPS逐束团BPM的需求。  相似文献   

19.
To realize an excitation of electron Bernstein waves (EBW) via mode conversion from X-mode waves injected from the high magnetic field side (HFS), new inner-vessel mirrors were installed close to a helical coil in the large helical device (LHD). 77 GHz electron cyclotron (EC) wave beams injected from an existing EC-wave injection system toward the new mirror are reflected on the mirror so that the beams are injected to plasmas from HFS. Evident increases in the electron temperature at the plasma core region and the plasma stored energy were observed by the HFS beam injection to the plasmas with the line-average electron density of 7.5×10 19 m 3 , which is slightly higher than the plasma cut-off density of 77 GHz EC-waves, 7.35×10 19 m 3 . The heating efficiency evaluated from the changes in the time derivative of the plasma stored energy reached ~70%. Although so far it is not clear which is the main cause of the heating effect, the mode-converted EBW or the X-mode wave itself injected from the HFS, an effective heating of high-density plasma over the plasma cut-off of EC-wave was successfully demonstrated.  相似文献   

20.
The fast ferrite tuning (FFT) real-time matching system has been designed and tested for the ion cyclotron range of frequency (ICRF) in EAST tokamak, which is necessary to transfer ICRF power to the plasma against variations in the antenna impedance. Through the test results, we proved this FFT system is feasible in EAST. Therefore this system have been upgraded recently to achieve real-time matching by the upgrading of the coil power supply and optimizing of the tuning structure. Finally the new FFT system achieved a response time of 10 ms and operated with a peak power of 1.5 MW, which satisfied the requirements of matching system in EAST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号