首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
全固态锂离子电池具有高安全性、高能量密度、宽使用温度范围以及长使用寿命等优势, 在动力电池汽车和大规模储能电网领域具有广阔的应用前景。作为全固态电池的重要组成部分, 无机固体电解质尤其是石榴石型固态电解质在室温下锂离子电导率可达10 -3 S·cm -1, 且对金属锂相对稳定, 在全固态电池的应用中具有明显的优势。然而正极与石榴石型固体电解质间接触性能以及界面的稳定性差, 使得电池表现出高的界面阻抗、低的库伦效率和差的循环性能。本文以全固态锂离子电池正极与石榴石型固体电解质界面为研究对象, 分析了正极/固体电解质的界面特性以及界面研究中存在的问题, 综述了正极复合、界面处理工艺、界面层引入等界面调控和改性的方法, 阐述了优化正极与石榴石型固体电解质界面结构, 改善界面润湿性的解决思路, 提出了未来全固态锂离子电池发展中有待进一步改进的关键问题, 为探索全固态锂离子电池的实际应用提供了借鉴。  相似文献   

2.
全固态锂离子电池以其高能量密度和高安全性成为具有广泛应用前景的下一代储能技术。然而,全固态锂离子电池的容量过低和寿命过短限制了其在储能领域的应用。其中,正极材料(活性材料、电子导电剂、离子导电剂及固态电解质等)固-固界面稳定性不佳限制了全固态锂离子电池的容量利用率和循环寿命。综上,介绍和讨论了正极材料固-固界面稳定性及优化方法,包括化学稳定性、电化学稳定性、机械稳定性和热稳定性等,同时归纳了常用的全固态锂离子电池正极材料固-固界面优化方法,为全固态锂离子电池的开发和应用提供参考。  相似文献   

3.
与传统锂离子电池相比,全固态锂金属电池因其安全性好、能量密度高的特点备受关注.但是电极与固态电解质的固固接触带来较大的界面阻抗,而锂金属较为活泼易与固态电解质发生反应,造成了界面不稳定.界面问题已经成为制约全固态电池发展的关键因素之一.有机-无机复合固态电解质兼顾无机固态电解质和有机固态电解质的优势,具有较高离子电导率和一定的力学强度,展现出优异的实用化前景.本文综述了近年来复合固态电解质与金属锂负极界面改性的研究进展,总结了当前界面改性的主要研究思路:包括在界面构筑"软接触"、调节固态电解质的力学性能以及调控界面处锂离子的沉积动力学过程等.同时,也对今后界面改性的研究趋势进行了展望.  相似文献   

4.
由于锂金属负极的理论比容量和固态电解质的安全性高,全固态锂硫电池越来越受到研究者的青睐.与液态锂硫电池相比,全固态锂硫电池最大的不同在于使用固态电解质替换了液态电解质,且固态电解质材料不可燃,因此有着更高的安全性.此外,经过优化处理后的固态电解质有着足够的机械强度,可以有效抑制锂枝晶的产生.同时在产品的制备和运输方面,全固态电池也有着更大的优势.然而,全固态电池中存在着大量的固固界面,这些固固界面会导致在循环过程中产生界面电阻、体积畸变等一系列问题,会制约全固态锂硫电池的商业应用.因此,近年来学者们对固固界面进行了广泛的研究,不断改进制备工艺,表征界面变化过程,并对离子迁移路径进行了模拟和验证.目前,全固态锂硫电池已经有部分投入了商业应用.全固态锂硫电池主要包括含硫正极、锂金属负极和固态电解质,而固态电解质主要分为无机固态电解质和有机固态电解质两大类.因此,对固态电解质界面的研究也可以分为两大类:一类是固态电解质内部界面,包括无机电解质与无机电解质之间的界面或者无机电解质与有机电解质之间的界面,该界面主要对离子电导率有着重要影响;另一类主要包括固态电解质与正负极之间的界面,对电池的化学稳定性、体积稳定性和离子电导率等均存在较大的影响.近年来,研究者发现通过改变混合方法、粒径、多孔基体和体积压力等能够有效改善界面.同时,随着表征技术的发展,越来越多的原位界面表征技术能够更加直观地展现界面的变化状态.本文系统性地阐述了全固态锂硫电池的内、外界面存在的问题和研究现状,并探讨了全固态锂硫电池未来的发展趋势和研究重点,以期为制备稳定、高性能的全固态锂硫电池提供参考.  相似文献   

5.
锂空气电池[Li-O_2(air)]具有极高的能量密度,引起了越来越多的关注。全固态Li-O_2(air)电池使用不易燃的无机固体锂离子导体材料作为电池电解质,大大提高了电池的安全性能。研发具有高离子电导率、高稳定性的固体电解质对全固态Li-O_2(air)电池的发展起到极大的推动作用。此外,研发高性能正极催化剂、采取合理的技术手段提高电极/固体电解质界面性能也是全固态Li-O_2(air)电池面临的挑战。分别从正极、负极、固体电解质以及电极/电解质界面等方面对全固态Li-O_2(air)电池进行综述。  相似文献   

6.
传统的液体电解质在充放电的循环过程中易在负极产生枝晶,导致电池短路,且液体电解质存在易燃、易爆、泄露等安全问题。固体电解质能够很好的解决上述安全性问题,并且具有较好的稳定性,是替代液体电解质的不二选择。固体电解质需要满足高的离子电导率、宽的电化学窗口、优良的化学相容性、简单的制备工艺、低廉的成本等要求,因此需要进一步研发高性能固体电解质或电极/电解质界面改性材料,便于优化和提升固态电池的电化学性能。金属有机骨架和共价有机框架化合物是近年来新兴的、具有周期性结构的多孔材料,在电池领域的应用已经崭露头角。综述了金属有机骨架和共价有机框架化合物在固态锂离子电池上的应用及研究进展,并对如何改进金属有机骨架和共价有机框架固体电解质的电化学性能提出建议。  相似文献   

7.
全固态锂离子电池相较于液态电池而言,其能量密度更高,安全性更好,符合未来锂离子电池的发展方向,而固体电解质是该类型电池的关键组件。其中,石榴石型电解质锂镧锆氧(Li7La3Zr2O12,LLZO)因具有较高的锂离子电导率及与金属锂的良好兼容性,有望成为有机电解液的替代品。本文综述了该类型固体电解质的离子迁移机理,以及不同掺杂位点及掺杂剂类型对结构和电性能的影响,特别介绍了现阶段石榴石型固体电解质的致密化技术及机理,调研了LLZO界面改性方面的进展,对石榴石型固体电解质在锂离子电池中的应用进行展望。  相似文献   

8.
滕雅男  柳欢  徐薇  白杰  李春萍 《功能材料》2023,(2):2109-2122
石榴石型Li7La3Zr2O12(LLZO)固态电解质因高安全性且对锂金属稳定成为固态锂电池的关键材料。但是,石榴石型固态电解质离子电导率还有待提高以及固-固界面不良接触导致的界面电阻大等问题使LLZO基固态电池的实际应用受到了限制。从石榴石型LLZO结构角度出发,探讨了锂离子输运机制并综述了提高离子电导率的策略及最新成果。针对固态锂电池无法避免的界面问题,从LLZO固态电解质与同为固态的电极接触方面,总结了优化界面的具体方法。最后,提出了石榴石型固态电解质未来可研究的方向,并促进其在全固态锂电池中的发展和应用。  相似文献   

9.
基于石榴石固体电解质的固态锂电池面临着固体电解质和固体电极之间较大的界面阻抗问题, 导致循环性能不佳。为了解决此问题, 本课题组制备并研究了LiNi1/3Co1/3Mn1/3O2基正极、Li6.4La3Zr1.4Ta0.6O12陶瓷固体电解质和金属锂负极构成的固态锂电池。在构筑LiNi1/3Co1/3Mn1/3O2基正极时采用三种不同的导电碳, 研究表明, 与科琴黑和超导炭黑相比, 使用气相生长碳纤维(Vapor Grown Carbon Fiber, VGCF)时, 固态电池有更优异的循环性能。这是因为充电到高电压时, VGCF比另外两种导电剂引起的副反应更少, 从而减少能增加电池内阻的碳酸盐类副产物的形成。这些结果说明电子导电剂的稳定性对固态锂电池的循环性能有重要影响。  相似文献   

10.
锂离子电池正极材料LiFePO4   总被引:2,自引:0,他引:2  
傅原 《新材料产业》2003,(10):13-16
一般意义上的电池是由三部分组成的:正极、负极与电解质。对于锂离子电池来讲,锂离子作为电荷载体,承担着传输电能的任务。当电池放电时,锂离子从负极通过电解质流向正极,而充电时则反向流回。如图1所示:锂离子有许多独特的性能,比如质轻、电极电动势低(比标准氢电极低3.04V)等。这些特性使得锂离子电池与其它电池相比具有高能量密度与高工作电压的优势。然而,由于金属锂与空气和水剧烈反应,因此锂离子电池中的电极材料是以将锂离子镶嵌在其它材料中的形式构成的。在晶体学中,客体原子或客体离子移入主晶体结构中的反应多被称作“插入”或…  相似文献   

11.
All-solid-state lithium batteries have been developed to secure safety by substituting a flammable liquid electrolyte with a non-flammable solid electrolyte. However, owing to the nature of solids, interfacial issues between cathode materials and solid electrolytes, including chemical incompatibility, electrochemo-mechanical behavior, and physical contact, pose significant challenges for commercialization. Herein, critical factors for understanding the performance of all-solid-state batteries in terms of solid interfaces and non-zero lattice strains are identified through a strategic approach. The initial battery capacity can be increased via surface coating and electrode-fabrication methods; however, the increased lattice strain causes significant stress to the solid interface, which degrades the battery cycle life. However, this seesaw effect can be alleviated using a more compacted electrode microstructure between the solid electrolyte and oxide cathode materials. The compact solid interfaces contribute to low charge-transfer resistance and a homogeneous reaction between particles, thereby leading to improved electrochemical performance. These findings demonstrate, for the first time, a correlation between the uniformity of the electrode microstructure and electrochemical performance through the investigation of the reaction homogeneity among particles. Additionally, this study furthers the understanding of the relationship between electrochemical performance, non-zero lattice strain, and solid interfaces.  相似文献   

12.
随着对大型储能电池的需求逐渐增加,钠离子电池由于其资源丰富,价格低廉且与锂性质相似等优点而被广泛关注。在钠离子电池的关键材料选择中,钠离子电池的电化学性能和安全性同时受电解液的影响,这不仅决定了电池的电化学窗口和能量密度,而且还控制着电极/电解液界面的性质。本文首先综述了钠离子电池电解质的基本要求、主要分类,重点讨论了对钠离子电池电解质的选择性要求及不同钠盐的物化性能和对固体电解质界面的影响;其次针对不同溶剂和材料的兼容性以及材料在不同溶剂体系中的储能机制等,分别对材料在醚类和酯类电解液中获得的固体电解质界面特点、倍率性能、循环性能等展开分析。最后指出钠离子电池电解质未来在与材料的匹配、关键性表征方法等方面的发展路线。  相似文献   

13.
Secondary batteries with high energy density, high specific energy and long cycle life have attracted increasing research attention as required for ground and aerial electric vehicles and large-scale stationary energy-storage. Lithium–sulfur (Li–S) batteries are considered as a particularly promising candidate because of their high theoretical performance and low cost of active materials. In spite of the recent progress in both fundamental understanding and developments of electrode and electrolyte materials, the practical use of liquid electrolyte-based Li–S batteries is still hindered by their poor cycling performance and safety concerns. Solid-state Li–S batteries have the potential to overcome these challenges. In this review, the mechanisms of Li ion transport and the basic requirements of solid-state electrolytes are discussed. We focus on recent advances in various solid-state Li–S battery systems, from quasi-solid-state to all-solid-state Li–S batteries. We also describe the remaining challenges and plausible solutions, including improved designs and compositions of electrode materials, solid-state electrolytes and the electrode/electrolyte interfaces. Though many fundamental and technological issues still need to be resolved to develop commercially viable technologies, solid-state Li–S batteries offer an attractive opportunity to address the present limitations.  相似文献   

14.
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.  相似文献   

15.
All-solid-state batteries are an exciting technology for increased safety and energy density compared to traditional lithium-ion cells. Recently, we developed a theory of mapping inner potentials and thermodynamic driving forces specific to the solid-state batteries, allowing prediction of the “intrinsic” interfacial lithium barriers. This potential mapping methodology, based purely on calculated bulk and surface properties, enables fast screening of a variety of advanced solid electrolyte materials as well as a selection of cutting-edge high-voltage cathode materials, predicting properties of 48 distinct battery configurations. A number of cathode/electrolyte pairs are identified which have low “intrinsic” barriers to both the charge and discharge process at all states of charge, suggesting that they will most benefit from engineering efforts to reduce extrinsic interfacial impedance. These predictions agree well with available experimental measurements, which form only a subset of the predicted interfaces. Thus, this interface potential model will accelerate the design process from emerging materials to all-solid-state battery devices.  相似文献   

16.
Conventional ion batteries utilizing metallic ions as the single charge carriers are limited by the insufficient abundance of metal resources. Although supercapacitors apply both cations and anions to store energy through absorption and/or Faradic reactions occurring at the interfaces of the electrode/electrolyte, the inherent low energy density hinders its application. The graphite‐cathode‐based dual‐ion battery possesses a higher energy density due to its high working potential of nearly 5 V. However, such a battery configuration suffers from severe electrolyte decomposition and exfoliation of the graphite cathode, rendering an inferior cycle life. Herein, a new surface‐modification strategy is developed to protect the graphite cathode from the anion salvation effect and the deposition derived from electrolyte decomposition by generating an artificial solid electrolyte interphase (SEI). Such SEI‐modified graphite exhibits superior cycling stability with 96% capacity retention after 500 cycles under 200 mA g?1 at the upper cutoff voltage of 5.0 V, which is much improved compared with the pristine graphite electrode. Through several ex situ studies, it is revealed that the artificial SEI greatly stabilizes the interfaces of the electrode/electrolyte after reconstruction and gradual establishment of the optimal anion‐transport path. The findings shed light on a new avenue toward promoting the performance of the dual‐ion battery (DIB) and hence to make it practical finally.  相似文献   

17.
Owing to the use of solid electrolytes instead of flammable and potentially toxic organic liquid electrolytes, all solid-state lithium batteries (ASSLBs) are considered to have substantial advantages over conventional liquid electrolyte based lithium ion batteries(LIBs) in terms of safety, energy density, battery packaging, and operable temperature range. However, the electrochemistry and the operation mechanism of ASSLBs differ considerably from conventional LIBs. Consequently, the failure mechanisms of ASSLBs, which are not well understood, require particular attention. To improve the performance and realize practical applications of ASSLBs, it is crucial to unravel the dynamic evolution of electrodes, solid electrolytes, and their interfaces and interphases during cycling of ASSLBs. In situ transmission electron microscopy (TEM) provides a powerful approach for the fundamental investigation of structural and chemical changes during operation of ASSLBs with high spatio-temporal resolution. Herein, recent progress in in situ TEM studies of ASSLBs are reviewed with a specific focus on real-time observations of reaction and degradation occurring in electrodes, solid electrolytes, and their interfaces. Novel electro-chemo-mechanical coupling phenomena are revealed and mechanistic insights are highlighted. This review covers a broad range of electrode and electrolyte materials applied in ASSLBs, demonstrates the general applicability of in situ TEM for elucidating the fundamental mechanisms and providing the design guidance for the development of high-performance ASSLBs. Finally, challenges and opportunities for in situ TEM studies of ASSLBs are discussed.  相似文献   

18.
Inorganic solid fast Li+ conductors based batteries are expected to overcome the limitations over safety concerns of flammable organic polymer electrolytes based Li+ batteries. Hence, an all-solid-state Li+ battery using non-flammable solid electrolyte have attracted much attention as next-generation battery. Therefore, in the development of all-solid-state lithium rechargeable batteries, it is important to search for a solid electrolyte material that has high Li+ conductivity, low electronic conductivity, fast charge transfer at the electrode interface and wide electrochemical window stability against potential electrodes and lithium metal. Hence, significant research effort must be directed towards developing novel fast Li+ conductors as electrolytes in all-solid-state lithium batteries. Among the reported inorganic solid Li+ conductive oxides, garnet-like structural compounds received considerable attention in recent times for potential application as electrolytes in all-solid-state lithium batteries. The focus of this review is to provide comprehensive overview towards the importance of solid fast lithium ion conductors, advantages of lithium garnets over other ceramic lithium ion conductors and understanding different strategies on synthesis of lithium garnets. Attempts have also been made to understand relationship between the structure, Li+ conduction and Li+ dynamics of lithium garnets. The status of lithium garnets as solid electrolyte in electrochemical devices like all-solid state lithium battery, lithium-air battery and sensor are also discussed.  相似文献   

19.
With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号