首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针对联合收割机液压系统中齿轮泵浮动侧板磨损严重的问题,重点研究了齿轮端面与侧板密封面摩擦副的失效机理。以某型号联合收割机用齿轮泵为例,首先建立齿轮泵三维流体域模型;其次运用CFD软件解析齿轮泵内部流场,以获取作用于侧板两面的反推力和压紧力;再次运用热切油膜理论计算齿轮端面与侧板密封面摩擦副的油膜温升,确定导致侧板磨损的关键因素。该研究为降低侧板磨损而进行结构优化设计提供了理论基础和技术支撑。  相似文献   

2.
一、概述齿轮泵泄漏有三条途径:一是通过齿顶圆与泵体内孔间的径向间隙;二是通过齿轮端面与侧板之间的轴向间隙;三是两个齿轮啮合处的接触间隙。而在高压齿轮泵中,一般都采用浮动侧板来减少轴向间隙泄漏量。有的泵在压油区也采用径向间隙自动补偿装置来减少径向间隙泄漏量。但具有双向功能的齿轮泵,就难以使用径向间隙补偿装置。尽管径向泄漏量比  相似文献   

3.
通过仿真软件FLUENT建立了浮动侧板油膜间隙的压力场模型,分析了油膜压力场作用在浮动侧板上的负载力及其力矩,得到了浮动侧板受到的动态负载力及其力矩。仿真结果表明:在出口压力为16MPa的工况下,在浮动侧板受到的负载力及其力矩中,油膜压力场负载力及其力矩所占比例分别为76.22%和72.93%;利用实际产品背压腔结构对分析结果进行了验证,得到的力和力矩压紧系数分别为1.058和1.069。  相似文献   

4.
《机械科学与技术》2014,(12):1876-1879
为提高外啮合齿轮泵齿轮端面间隙内的润滑性能,提出了旨在强化其内动压效应的设计方法,结合加工简单的基本要求,以主从动齿轮的两轴心在浮动侧板内侧面上的投影点为基准,将浮动侧板内侧面分成上中下3大区域,其中,上下两区域的倾斜角由油膜最佳承载量条件来计算;中间区域为平行面,主要起密封作用。结果表明:提出的组合油楔结构以及推导出的斜面倾斜角,简单实用,加工方便;采用36°的密封区和根圆处的1.25最佳收敛比,具有更大的油膜力和剪切流量,并提高容积效率等。  相似文献   

5.
齿轮泵浮动侧板用于保证齿轮泵长期工作下的容积效率保持不变。浮动侧板设计的关键在于表面压力及其力矩的计算,若计算不准确将导致浮动侧板磨损,从而导致齿轮泵容积效率低。长期以来,表面压力及其力矩的计算以经验为主。随着齿轮泵出口压力的不断提高,这种经验计算带来的误差已无法满足设计需要。利用专业泵阀CFD仿真软件对齿轮泵齿槽平均压力分布、浮动侧板表面压力分布等进行了CFD分析,并利用分析结果建立了浮动侧板表面压力及其力矩的计算公式。经验证,该计算公式计算结果能够满足工程应用的需求。  相似文献   

6.
柱销式叶片泵配流副功率损失和最佳轴向间隙研究   总被引:1,自引:0,他引:1  
根据柱销式叶片泵配流副几何特征和运动特性,从油液泄漏和黏性摩擦两个方面分析,建立了柱销式叶片泵配流副功率损失计算模型。在泵结构参数和工况参数一定情况下,通过最小功率损失计算,得到配流副最佳油膜厚度计算公式,并结合实际加工可操作性给出配流副最佳轴向间隙选择方法。分析了变工况下动力黏度、负载压力和转速对最佳油膜厚度的影响,发现低压时油液动力黏度对最佳油膜厚度分布影响最为明显。研究结论对柱销式叶片泵配流副轴向间隙尺寸设计有一定指导意义。  相似文献   

7.
对于单作用水环压缩机而言,其轴向间隙系指叶轮端面与侧盖(或侧板、分配器)之间的间隙。轴向间隙的存在,使得高压区的气体通过该间隙泄漏到低压区去。轴向间隙值的确  相似文献   

8.
为延长装载机用叶片泵使用寿命,运用热切油膜理论研究叶片泵转子与定子摩擦副失效机理,提出叶片泵轴向间隙参数化设计方法。针对装载机用高压叶片泵浮动侧板磨损严重问题,以某型号装载机液压系统中高压叶片泵为研究对象,建立定子与转子间摩擦副数学模型,计算油膜温升改进叶片泵轴向间隙,完善叶片泵结构设计。试验数据表明,改进叶片泵轴向间隙后,该型号装载机叶片泵使用寿命满足设计要求。该研究为高压叶片泵摩擦副失效机理研究提供了理论依据。  相似文献   

9.
采用间隙密封的直线共轭内啮合齿轮泵的内齿圈在油液压力和齿轮啮合力的作用下,其外壁对泵体内壁产生较大的压力,基于该问题首先对内齿圈进行了受力分析,其次在泵体内壁开设由矩形槽和V形槽构成的复合静压支承槽,并利用油膜静压支承原理减小内齿圈与泵体内壁直接接触所造成的磨损,最后建立了内齿圈静压支承油膜的承载力与承载刚度的数学模型,这将对进一步研究直线共轭内啮合齿轮泵提供一定的理论依据。  相似文献   

10.
全回转推进器桨毂动密封采用O形密封,其实际间隙的改变直接导致压缩率变化,从而对密封性能产生影响。从设计角度和工作角度对桨毂密封端面的实际间隙进行分析,研究服役过程中的装配误差、实际工况和摩擦磨损导致的间隙变化规律以及相互耦合。基于该实际间隙,在ABAQUS软件中建立桨毂动密封有限元模型,分析不同压缩率和介质压力下动密封的密封性能,如Mises应力、润滑脂油膜厚度和压力等,揭示了不同间隙下桨毂动密封性能的变化规律。结果表明:随着压缩率增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体侧壁渐渐向主接触区过渡;随着介质压力增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体底部逐渐向法兰低压接触区过渡;最大油膜压力始终大于油压值,动密封不会发生失效;通过适当增加装配间隙和介质压力有利于密封圈在自密封作用下获得更好的密封性能。  相似文献   

11.
为了研究在高速高压工况下双圆弧螺旋齿轮泵齿顶间隙对齿轮泵泄漏及空化特性的影响,建立了双圆弧螺旋齿轮泵最佳齿顶间隙数学模型,计算出最佳齿顶间隙。利用PumpLinx对考虑空化后不同齿顶间隙的齿轮泵内部流场进行数值模拟,结果表明:当齿顶间隙为0.02 mm,齿轮泵的流量脉动和压力脉动相对较小,流量输出品质好,与理论分析最佳齿顶间隙为0.0207 mm基本一致,验证了最佳齿顶间隙模型建立的正确性;齿顶间隙会影响齿轮泵内部流场的空化程度和泄漏量,齿轮泵内部的空化程度随着齿顶间隙的增大而减小,齿顶间隙处的泄漏会随齿顶间隙的增大而增大;齿轮泵齿顶间隙处的空化具有密封作用,可以减小齿顶间隙泄漏。研究结果对双圆弧螺旋齿轮泵结构优化及应用具有一定的参考价值。  相似文献   

12.
为研究浮动油封O形圈初始安装变形的影响,基于Ansys Workbench平台建立浮动油封的二维轴对称有限元模型,并考虑O形圈初始安装变形进行非线性接触分析,研究不同油压、安装间隙、硬度对于O形圈的应力、接触压力、接触摩擦力以及浮封环端面支反力的影响。结果表明:考虑安装过程的情况下,O形圈并不是位于浮动油封中相对居中的位置,而是在浮动油封中部偏上位置,且O形圈的最大von Mises应力相比不考虑O形圈安装过程时更大,因此考虑O形圈安装过程更符合实际情况;油压升高造成最大von Mises区域变小变窄会加大裂纹失效的风险;最大接触摩擦力集中于浮封环端面处,且接触长度随油压增大不断增加;浮封环端盖y方向作用力的增速远超x方向作用力的增速;在恒定油压的情况下,应力随安装间隙的减小而增大,应力随硬度的增加而增大;浮动油封在2 MPa油压范围内,最大接触压力均大于油压,能保证浮动油封的自密封性。  相似文献   

13.
通过建立轴向柱塞泵配流副的几何模型,利用雷诺方程推导了配流副的油膜压力方程,采用有限差分法和松弛迭代法求解雷诺方程。利用FORTRAN语言编程求解,利用MATLAB语言对油膜厚度、压力、温度分布进行了仿真研究。结合油膜厚度方程、雷诺方程、能量方程、弹性变形方程、黏温黏压方程和密度温压方程,仿真微观织构配流副的热弹流润滑特性。研究表明:配流副油膜厚度增大,最大油膜压力减小,最高温度值减小;配流副的热-流-固耦合效果随油膜间隙收敛逐渐明显,在最小油膜厚度处达到最大,并且,油膜压力值达到最大;加工微观织构可以显著改变配流副的油膜压力和温度分布。  相似文献   

14.
当斜盘轴向柱塞泵处于高压工况时,其配流盘会产生翘曲变形。基于弹性流体动力润滑理论,建立斜盘轴向柱塞泵配流副流固耦合模型,求解配流副润滑控制方程,分析了斜盘轴向柱塞泵缸体转速、缸体倾角、液压油黏度、配流副油膜厚度、配流副密封带宽度等工况与结构参数对其配流盘发生翘曲变形的影响。研究显示:斜盘轴向柱塞泵配流盘变形云图以腰形槽中心连线为轴线呈现一定的对称分布;配流盘高压侧外密封带区域变形最大,配流盘低压侧外密封带区域变形最小;在相同工况下,配流盘的材料与结构影响配流副油膜厚度与形状。  相似文献   

15.
压裂泵的十字头滑履与导板间隙、供油流量和油压等关键参数,目前主要通过工程经验进行调节,缺乏科学依据,易致导板磨损和烧瓦,严重影响压裂泵服役寿命。针对以上问题,建立3500HP压裂泵的轴瓦、轴承间隙及润滑油组成的流体力学系统,利用计算流体力学软件Fluent进行滑动轴承的流场分析,考察润滑油黏度、轴瓦间隙、润滑流量、润滑油压对压裂泵用滑动轴承的影响。结果表明:随着滑履与导板间隙的减小,导板的形变与应力会增大,最优导板间隙为0.5 mm左右;增大供油流量会使导板的形变与应力降低,供油流量最好不低于2.2 L/min;增大供油黏度会使导板的形变与应力变大,在0.2~0.4 Pa·s范围内供油黏度越小越好;随着供油油压的增大,导板的形变与应力增加显著,当油压大于4 MPa时,导板的应变与应力呈现指数级增大,当供油油压为3 MPa时,导板的形变与应力达到最小值。  相似文献   

16.
为建立可倾瓦推力轴承惰转过程中最小油膜厚度的预测方法,依据核主泵推力轴承的实际工作情况,基于雷诺方程的自编程序,分别进行热态和冷态下主、副轴瓦润滑性能参数的计算与数值模拟分析,提出可倾瓦推力轴承的最小油膜厚度的理论拟合公式,并对最小膜厚的计算值和拟合值进行对比和分析。结果表明:随着转速降低,主轴瓦的最小膜厚单调减小,副轴瓦的最小膜厚先增加后减小;主、副轴瓦最小膜厚的计算值可以和拟合值较好地对应,验证了理论拟合公式的可靠性。提出的理论拟合公式可以通过额定转速下的最小膜厚计算结果预测多种工作条件下的最小油膜厚度,为主泵惰转的安全性提供重要参考。  相似文献   

17.
为了提升润滑油系统可靠性,避免轴承磨损,采用CFD分析螺杆泵斜-平面固定瓦推力轴承的润滑特性。计算该螺杆泵螺杆轴向力,得到油膜承载力数值范围;采用有限差分法得到油膜压力分布与厚度分布,采用有限体积法仿真分析不同油膜厚度、不同进油温度时轴承的压力场。仿真结果表明:温度通过影响润滑油黏度对轴承压载产生影响,当油膜厚度固定时,进油温度越低,润滑油黏度越大,轴承所受压载越大;当进油温度一定时,油膜厚度降低,则承载能力增加。因此,在低温启动滑油泵时,油膜由薄变厚平衡螺杆轴向力的过程中,轴承压载可能会超过许用压载,从而导致轴承磨损。  相似文献   

18.
新型组合槽端面干气密封特性研究   总被引:1,自引:0,他引:1  
为了进一步提升干气密封端面流体膜动压效应,提出一种新型组合槽端面干气密封,该组合槽由两个相邻的螺旋槽周向部分重叠组合而成,包括一个长螺旋槽,一个短螺旋槽,两槽的槽深及径向长度不同。建立该组合槽与传统槽端面密封的数学模型,并运用有限差分法对其密封性能进行数值分析。结果表明:新型组合槽在端面间隙约小于1.5μm区域,流体膜开启力大于传统槽,且间隙越小,两者差值越大;泄漏量亦大于传统槽,但其值远小于泄漏量的设计值;在端面间隙约小于3.5μm区域,新型组合槽流体膜刚度显著大于传统槽,且间隙越小,两者差值越大。鉴于组合槽在泄漏量不超标的情况下,在间隙较小时端面流体膜具有更大的刚度、开启力及刚漏比,其综合性能显著优于传统槽型密封。  相似文献   

19.
周俊丽  阮琪  杨帅  王贺  贾谦 《润滑与密封》2021,46(12):157-162
核主泵推力轴承摩擦副采用的润滑介质黏度较低且轴承工作于高温高压等极端工况下,采用超声技术对润滑膜分布进行精确测量时,要考虑环境因素的影响。建立核主泵推力轴承润滑膜分布的超声检测模型,并在模拟试验台上进行推力润滑状态的实测。在对测试结果的分析中考虑测量时温度和压力等环境因素的影响,分析环境因素对超声检测精度的影响程度。结果表明:在启、停阶段推力轴承处于边界润滑状态,考虑温度和压力影响时润滑膜厚值最大会增大加38.5%;在额定转速下推力轴承处于流体润滑状态,考虑温度和压力影响时润滑膜厚值最大会增大加39.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号