首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
针对运动想象脑-机交互任务模式单一、识别精度低、实用性较差等问题,采用改进的共空间模式(CSP)的特征提取方法,并利用支持向量机(SVM)与CSP融合分类方法对多类任务运动想象脑电特征进行分类识别。首先,选择特定导联上的脑电信号进行小波分解与重构,去除冗余信息;其次,利用特征参数做差的方法,得到较为明显的脑电特征;最后,通过SVM融合CSP的分类模式,对脑电特征进行多任务分类。利用BCI竞赛数据,对左手,右手,舌和脚四类运动想象任务的脑电进行识别。结果表明:分类正确率最高达到90.9%,平均正确率为86.8%,Kappa系数为0.8867,信息传输速率可达0.68 bit/trial,能够有效的获得脑电特征并较好的实现多任务运动想象脑电识别。  相似文献   

2.
针对运动想象脑电信号的分类识别,提出一种基于小波变换和共空间模式滤波的方法进行特征提取。对EEG进行3层小波分解,提取相关层数小波系数的特征量;同时利用共空间模式对EEG进行空间滤波,提取其转换后信号的方差作为特征量,并将这两类特征量进行组合。该方法结合了时频域和空间域的特征信息,可提高分类识别的效果。最后选取BCI2003中Data setⅢ数据作为样本,分别用极限学习机和基于粒子群算法的支持向量机进行分类识别。实验结果表明极限学习机分类学习时间较快,最优识别率为94.2857%,证明了该方法更适用于脑机接口系统。  相似文献   

3.
为了能更好地对左右手运动脑电信号进行检测,用VC设计了脑电处理的上位机系统,利用小波变换和SVM的方法对脑电信号进行研究。这种方法主要是通过小波分解,针对C3电极处脑电信号,将脑电信号中各成分分别突出到不同尺度。提取不同尺度上的脑电信号的两种特征,即变化系数和波动指数。然后再将这两种特征组成一个向量送到支持向量机中进行训练和检测。共选取了四种采样频率,准确率最高达到98.32%。  相似文献   

4.
免疫多域特征融合的多核学习SVM运动想象脑电信号分类   总被引:1,自引:1,他引:1  
张宪法  郝矿荣  陈磊 《自动化学报》2020,46(11):2417-2426
针对多通道四类运动想象(Motor imagery, MI)脑电信号(Electroencephalography, EEG)的分类问题, 提出免疫多域特征融合的多核学习SVM (Support vector machine)运动想象脑电信号分类算法.首先, 通过离散小波变换(Discrete wavelet transform, DWT)提取脑电信号的时频域特征, 并利用一对多公共空间模式(One versus the rest common spatial patterns, OVR-CSP)提取脑电信号的空域特征, 融合时频空域特征形成特征向量.其次, 利用多核学习支持向量机(Multiple kernel learning support vector machine, MKL-SVM)对提取的特征向量进行分类.最后, 利用免疫遗传算法(Immune genetic algorithm, IGA)对模型的相关参数进行优化, 得到识别率更高的脑电信号分类模型.采用BCI2005desc-Ⅲa数据集进行实验验证, 对比结果表明, 本文所提出的分类模型有效地解决了传统单域特征提取算法特征单一、信息描述不足的问题, 更准确地表达了不同受试者个性化的多域特征, 取得了94.21%的识别率, 优于使用相同数据集的其他方法.  相似文献   

5.
共空间模式(CSP)作为一种空间滤波方法已在脑电信号(EEG)的特征提取上得到了广泛应用,而对脑电信号的通道和频带进行合理选择可以有效改善共空间模式特征在运动想象脑机接口(BCI)中的分类性能.针对已有选择方法中未充分考虑通道间差异性的问题,本文提出一种对通道和频带同时进行选择的块选择共空间模式(BS–CSP)特征提取...  相似文献   

6.
为解决运动想象脑电信号(EEG)的多分类问题,本文提出了一种基于粒子群优化支持向量机(PSO-SVM)的EEG分类方法,采用NEUROSCAN平台设计实验自测数据,对想象左手握握力器,右手握握力器,右脚踩油门三类运动想象任务进行了分类识别研究。采用FFT和IFFT对信号进行预处理,采用离散小波分析(DWT)提取能量值,并结合小波系数作为组合特征,分类效果明显好于BP和自组织神经网络(SOM)分类器。  相似文献   

7.
针对脑电信号(Electroencephalogram, EEG)采集易受干扰导致EEG分类准确率低的问题,提出一种基于共空间模式(Common Spatial Pattern, CSP)与决策树支持向量机法(Decision Tree Support Vector Machine, DTSVM)相融合的运动想象脑电信号处理方法。首先利用CSP算法对运动想象的EEG特征值进行特征提取,其次运用线性判别分析法(Linear Discriminant Analysis, LDA)、自适应增强分类法(Adaptive Boosting, Adaboost)和决策树支持向量机法分别对特征进行分类,最后通过实验对比发现,利用决策树支持向量机进行分类的分类效果最佳,分类准确率最高可达到92.52%。  相似文献   

8.
共空间模式(Common Spatial Pattern,CSP)是脑机接口(Brain-Computer Interface,BCI)中一种有效的特征提取方法,然而传统CSP算法并未考虑在提取前剔除可能会影响其性能的不相关的嘈杂通道信号。所以针对不同对象的通道选择问题,提出了一种最优区域共空间模式(ORCSP)特征提取方法。首先通过欧式距离得到每个通道的附近区域,再根据方差比选择可分性最高的区域,然后采用5折交叉验证对区域内通道数目进行寻优,进而得到区分度最高的区域特征,最后使用支持向量机(SVM)进行分类。所提方法在BCI竞赛数据上进行了实验测试,并与同类型的正则化CSP和局部区域CSP算法进行了对比,在BCI Competition Ⅲ Dataset Ⅳ a数据集上达到了89.78%的平均准确率。实验结果验证了所提出方法的有效性。  相似文献   

9.
脑电信号(EEG)是一种在医学领域应用非常广泛的生物电信号。单一的特征提取方法不能够多方面表示脑电信号特征,从而会给不同意识任务下运动想象脑电信号的分类带来一定困难。对此,提出一种基于离散小波变换(DWT)、排列熵(PE)和共空间模式算法(CSP)的特征提取方法(DWT-PECSP)。首先,采用db4小波基对原始脑电信号进行3层小波分解,根据左右手运动想象所处的频段重构出包含μ节律(8 Hz-12 Hz)和β节律(18 Hz-26 Hz)的频段信号;然后,分别计算出该频段信号的排列熵值和CSP方差作为特征量,并将这两组特征量进行组合;最后,将组合后的特征量输入到支持向量机(SVM)中进行分类识别。实验结果表明,该算法在2003年脑机接口竞赛的标准数据集(DataSet Ⅲ)分类上获得了较高的分类准确率(91.43%),均高于单一提取排列熵特征的准确率(71.42%)和CSP方差特征的准确率(85.71%)。通过对比近年来其他文献的特征提取方法,验证了DWT-PECSP算法能够更有效地提取运动想象脑电特征。  相似文献   

10.
《微型机与应用》2021,(1):62-66
基于运动想象脑电信号的脑-机接口系统在医疗领域具有广阔的应用前景,被应用于运动障碍人士的辅助控制以及脑卒的预后康复。由于运动想象的脑电信号信噪比低、不平稳以及差异性显著,对脑电信号识别带来负面影响。一个有效的特征提取算法能够提高脑-机系统的脑电信号识别率。提出一种多通道的脑电信号特征提取方法,将数据矩阵分解为基矩阵与系数矩阵的乘积,以类间离散度做为性能判据对系数矩阵进行特征提取,提取可分性更高、维数更少的特征。结合脑电信号识别领域常见的分类器在2008年BCI竞赛数据集上进行验证,证明所提方法是有效的。  相似文献   

11.
提出了一种基于Lagrangian支持向量机的不确定机械手鲁棒自适应控制方法。Lagrangian支持向量机采用梯度投影法学习机械手系统的未知部分,来对机械手系统进行非线性补偿。根据Lyapunov稳定性理论设计自适应律进一步在线调整支持向量机的参数,并叠加一个滑模控制项,以保证控制系统的稳定性和鲁棒性。对两关节机械手的仿真结果证明了以上控制方法的有效性。  相似文献   

12.
针对多类运动想象EEG信号在脑-机接口方面存在分类识别率低和被试者差异性的问题,提出了一种基于ERS/ERD现象的二级共空间模式特征提取的方法。首先对全部导联进行特定频段的小波包降噪和分解;其次对分解系数重构后的信号以手(左、右)和脚(脚、舌)这二类进行一级共空间模式获取空间滤波器并对其采用2-范数筛选准则,提取权重系数较大的N个导联;然后以优化导联的投影矩阵对手与脚进行空间滤波后的信号分别作为原始信号进行二级空间模式特征提取;最后采用支持向量机进行分类。采用BCI2005Ⅲa中三位被试者的数据进行仿真验证,得到分类正确率最高达到92.55%。结果表明,该方法对EEG信号的特征提取具有较好的效果。  相似文献   

13.
We investigated the possibility of applying a hybrid feed-forward inverse nonlinear autoregressive with exogenous input (NARX) fuzzy model-PID controller to a nonlinear pneumatic artificial muscle (PAM) robot arm to improve its joint angle position output performance. The proposed hybrid inverse NARX fuzzy-PID controller is implemented to control a PAM robot arm that is subjected to nonlinear systematic features and load variations in real time. First the inverse NARX fuzzy model is modeled and identified by a modified genetic algorithm (MGA) based on input/output training data gathered experimentally from the PAM system. Second the performance of the optimized inverse NARX fuzzy model is experimentally demonstrated in a novel hybrid inverse NARX fuzzy-PID position controller of the PAM robot arm. The results of these experiments demonstrate the feasibility and benefits of the proposed control approach compared to traditional PID control strategies. Consequently, the good performance of the MGA-based inverse NARX fuzzy model in the proposed hybrid inverse NARX fuzzy-PID position control of the PAM robot arm is demonstrated. These results are also applied to model and to control other highly nonlinear systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号