共查询到17条相似文献,搜索用时 46 毫秒
1.
针对运动想象脑-机交互任务模式单一、识别精度低、实用性较差等问题,采用改进的共空间模式(CSP)的特征提取方法,并利用支持向量机(SVM)与CSP融合分类方法对多类任务运动想象脑电特征进行分类识别。首先,选择特定导联上的脑电信号进行小波分解与重构,去除冗余信息;其次,利用特征参数做差的方法,得到较为明显的脑电特征;最后,通过SVM融合CSP的分类模式,对脑电特征进行多任务分类。利用BCI竞赛数据,对左手,右手,舌和脚四类运动想象任务的脑电进行识别。结果表明:分类正确率最高达到90.9%,平均正确率为86.8%,Kappa系数为0.8867,信息传输速率可达0.68 bit/trial,能够有效的获得脑电特征并较好的实现多任务运动想象脑电识别。 相似文献
2.
《计算机应用与软件》2016,(10)
针对运动想象脑电信号的分类识别,提出一种基于小波变换和共空间模式滤波的方法进行特征提取。对EEG进行3层小波分解,提取相关层数小波系数的特征量;同时利用共空间模式对EEG进行空间滤波,提取其转换后信号的方差作为特征量,并将这两类特征量进行组合。该方法结合了时频域和空间域的特征信息,可提高分类识别的效果。最后选取BCI2003中Data setⅢ数据作为样本,分别用极限学习机和基于粒子群算法的支持向量机进行分类识别。实验结果表明极限学习机分类学习时间较快,最优识别率为94.2857%,证明了该方法更适用于脑机接口系统。 相似文献
3.
4.
针对多通道四类运动想象(Motor imagery, MI)脑电信号(Electroencephalography, EEG)的分类问题, 提出免疫多域特征融合的多核学习SVM (Support vector machine)运动想象脑电信号分类算法.首先, 通过离散小波变换(Discrete wavelet transform, DWT)提取脑电信号的时频域特征, 并利用一对多公共空间模式(One versus the rest common spatial patterns, OVR-CSP)提取脑电信号的空域特征, 融合时频空域特征形成特征向量.其次, 利用多核学习支持向量机(Multiple kernel learning support vector machine, MKL-SVM)对提取的特征向量进行分类.最后, 利用免疫遗传算法(Immune genetic algorithm, IGA)对模型的相关参数进行优化, 得到识别率更高的脑电信号分类模型.采用BCI2005desc-Ⅲa数据集进行实验验证, 对比结果表明, 本文所提出的分类模型有效地解决了传统单域特征提取算法特征单一、信息描述不足的问题, 更准确地表达了不同受试者个性化的多域特征, 取得了94.21%的识别率, 优于使用相同数据集的其他方法. 相似文献
5.
6.
7.
针对脑电信号(Electroencephalogram, EEG)采集易受干扰导致EEG分类准确率低的问题,提出一种基于共空间模式(Common Spatial Pattern, CSP)与决策树支持向量机法(Decision Tree Support Vector Machine, DTSVM)相融合的运动想象脑电信号处理方法。首先利用CSP算法对运动想象的EEG特征值进行特征提取,其次运用线性判别分析法(Linear Discriminant Analysis, LDA)、自适应增强分类法(Adaptive Boosting, Adaboost)和决策树支持向量机法分别对特征进行分类,最后通过实验对比发现,利用决策树支持向量机进行分类的分类效果最佳,分类准确率最高可达到92.52%。 相似文献
8.
针对运动想象脑电信号特征提取困难;分类正确率低的问题;提出了利用小波熵进行特征提取并采用支持向量机(SVM)来分类的算法。计算运动想象脑电信号的功率;通过理论分析选择小波包尺度;对信号功率进行小波包分解并计算其小波包熵(WPE);提取C3、C4导联的小波包熵插值组成特征向量;将特征向量作为分类器的输入送入支持向量机进行分类。采用国际BCI竞赛2003中的Graz数据进行验证;算法的最高分类正确率达97.56%。算法特征向量维数低、数据量小、分类正确率高;对运动想象脑电信号特征提取及分类的任务可以提供参考方法。 相似文献
9.
共空间模式(Common Spatial Pattern,CSP)是脑机接口(Brain-Computer Interface,BCI)中一种有效的特征提取方法,然而传统CSP算法并未考虑在提取前剔除可能会影响其性能的不相关的嘈杂通道信号。所以针对不同对象的通道选择问题,提出了一种最优区域共空间模式(ORCSP)特征提取方法。首先通过欧式距离得到每个通道的附近区域,再根据方差比选择可分性最高的区域,然后采用5折交叉验证对区域内通道数目进行寻优,进而得到区分度最高的区域特征,最后使用支持向量机(SVM)进行分类。所提方法在BCI竞赛数据上进行了实验测试,并与同类型的正则化CSP和局部区域CSP算法进行了对比,在BCI Competition Ⅲ Dataset Ⅳ a数据集上达到了89.78%的平均准确率。实验结果验证了所提出方法的有效性。 相似文献
10.
11.
针对脑电信号(electroencephalogram,EEG)运动想象中单一特征无法多维表征信号中的信息导致的分类准确率不高的问题,提出一种基于样本熵和共空间模式特征融合的特征提取算法。算法先对原始脑电信号进行小波包分解,从中选择包含μ和β节律的分量进行重构,然后分别提取重构信号的样本熵和CSP(common spatial pattern,CSP)特征,将两者融合组成新的特征向量,使用所设计的一维卷积神经网络对其进行识别获得分类结果。所提方法在2003年BCI Dataset III中获得了91.66%的分类准确率,在2008年BCI Dataset A中获得了85.29%的平均分类准确率。与近年来文献中提出的多特征融合算法相比,准确率提高了7.96个百分点。 相似文献
12.
研究基于支持向量机的人脸识别技术.在识别过程中,首先将人脸图片分为子图片,再利用离散小波变换提取子图片特征组合为多维向量作为整幅人脸图片特征.在此基础上,为每个类构造一个支持向量机进行识别.基于ORL人脸数据库的模拟实验表明,算法实现较简单,并具有较好的性能. 相似文献
13.
基于ECoG的运动想象脑-机接口分类方法 总被引:1,自引:0,他引:1
脑—机接口BCI(Brain-Computer Interface)技术是近年来国际上的研究热点之一,它通常利用脑电EEG(electroencephalo-gram)来实现无动作的人机交互,运动想象是其中一种重要的BCI实验范式。有关研究表明,脑皮层电位ECoG(electrocorticogram)具有更好的信噪比与频带特性。研究基于ECoG的运动想象BCI系统,针对ECoG信号的特点,改进了信号处理方法,提取数据的公共空间模式CSP(Common Spatial Pattern)特征,并利用支持向量机SVM(Support Vector Machines)进行分类器设计,提高了运动意向的识别正确率。用相应方法处理2005年脑-机接口竞赛中的一组实验数据,正确率达到92%,相比于当时参赛时所用的方法提高了6%。实验还发现,支持向量机在克服维数灾难和过拟合方面具有更好的鲁棒性。 相似文献
14.
为了提高网络流量预测的精度,研究了一种融合小波变换与贝叶斯LSSVM的网络流量预测方法。首先将原始流量数据时间序列进行小波分解,并将分解得到的近似部分和各细节部分分别单支重构到原级别上;对各个重构后的序列分别用最小二乘支持向量机进行预测,将贝叶斯证据框架应用于最小二乘支持向量机模型参数的选择;将各个预测结果重构后得到对原始序列的预测结果。对比实验表明,该模型不仅具有较快的运行速度,而且具有较高的预测精度。 相似文献
15.
探讨基于支持向量机的高分辨率遥感图像中某型号飞机的检测识别问题.提出将小波变换结合灰度共生矩阵法提取目标样本信息特征的一种新方法,通过对Brodatz纹理进行测试,实验表明该方法有效提高了纹理分类识别率.此外,将支持向量机方法运用于遥感图像目标识别中,用分块区域搜索的方法检测到目标所在区域,实现对目标的检测识别.试验表明,该方法快速、高效且具备一定的鲁棒性. 相似文献
16.
基于小波变换和支持向量机的人脸检测 总被引:2,自引:0,他引:2
提出一种新的人脸检测方法——基于小波变换和支持向量机的方法。其方法的新颖之处体现在:通过综合原输人图像的小波变换值、灰度值的投影来进行特征分析;运用统计模型来估计类条件概率密度函数;运用最优的分类方法——贝叶斯分类器进行判决分类。人脸类采用正态分布建模,而非人脸类(包括除人脸类之外的一切事物)仍用正态分布来建模是不合理的。但可以用支持向量机方法从非人脸类中抽出一些跟人脸类很接近的非人脸类的特殊子集,然后对这特殊子集用正态分布进行建模。 相似文献
17.
研究表明:不同受试者由于个体差异,会引起在执行相同运动想象任务时,产生与受试者关联的特定脑电信号特征,这是设计脑机接口系统面临的一个实际问题.为解决这个问题,本文提出了一种基于时–空–频联合特征的提取方法.首先,对原始118导联的EEG进行空间特征分析,从中提取出与运动想象相关脑区对应的55导联EEG信号.进一步,在训练集上,通过7–折交叉验证,训练出与受试者匹配的时间窗和频带.其次,利用8个共空域滤波器进行特征提取.最后,将获得基于样本的运动想象特征,采用相关向量机进行分类.仿真结果表明:该算法在第3届脑机接口竞赛数据集Data IVa分类上获得5位受试者平均分类精度为94.49%,结果优于当年第1名94.17%.此外,与其他3种常用的方法比较亦具有明显优势.本文提出的基于样本的时–空–频特征提取方法和相关向量机的结合,该算法整体性能优越,为基于运动想象的脑机接口在线系统设计提供了一种新方法. 相似文献