首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
介绍了增材制造技术的原理以及几种常用工艺,指出了增材制造技术在模具制造行业的应用优势。重点介绍了增材制造塑料模具钢、热作模具钢和冷作模具钢的最新研究进展及相关成果;阐述了增材制造技术工艺参数(扫描功率、扫描速度和能量密度)对成形件的相对密度、微观组织结构和力学性能的影响以及相应的后处理工艺。最后列举了增材制造在模具行业的应用实例,分析指出了当前增材制造模具面临的挑战和一些相应的解决措施以及今后的发展趋势。  相似文献   

2.
刘楠  王建  王建忠   《钛工业进展》2022,39(3):41-48
受材料本征脆性的限制,高铌TiAl合金复杂构件不适于通过机械加工获得,目前主要通过近净成形制备。分析了高铌TiAl合金的强化机制,并主要从铸造和增材制造2个方面介绍了高铌TiAl合金复杂构件加工技术的发展现状。熔模铸造TiAl合金技术成熟,已经可以实现批量化生产,但目前仍存在工艺复杂、模具制作难度大、成本高的问题。增材制造技术尤其是EBM技术取得了较快发展,高铌TiAl合金复杂构件的加工问题在一定程度上得到了解决,但产品依然存在表面粗糙度大、成形精度低等问题。  相似文献   

3.
介绍了激光增材制造高熵合金的工艺方法,从成形工艺、合金元素含量(摩尔分数)、热处理工艺和增强相添加等几个方面综述了国内外激光增材制造高熵合金的研究进展,分析了激光熔化沉积和选区激光熔化成形两种主要激光增材制造技术,以及两种技术制备高熵合金的微观结构和力学性能,指出了高熵合金激光增材制造技术的发展趋势及存在的主要问题,并提出了改进措施。  相似文献   

4.
金属增材制造技术自诞生以来,经快速发展,已在诸多领域得到了广泛的应用,被列入决定未来经济的十二大颠覆性技术之一。基于丝材的金属增材制造技术由于其沉积效率高、制造成本低、制造周期短和材料利用率高,近年来成为国内外研究和应用的热点。本文以钛合金丝材为原材料,针对广泛采用的电弧/等离子弧熔丝、电子束熔丝和激光熔丝增材制造技术,分别从成形工艺参数优化、宏微观组织结构分析、后热处理组织性能调控及专用原材料开发等方面所取得的最新研究成果进行了详细论述。在此基础之上,介绍了基于钛合金丝材的增材制造在工程化应用及相关标准规范的制定情况。最后,指出钛合金丝材增材制造技术在组织和性能等方面存在的固有不足,提出了采用锻造+增材复合成形复合后处理和专用丝材研制等方法,并建立有别于传统锻造和铸造的新标准体系,有助于推广其在各领域的大规模应用。  相似文献   

5.
以TiAl合金块为原料,利用水冷铜坩埚真空感应熔炼气雾化技术制粉,通过对导流系统和雾化器的优化改进,制备出氧含量低、细粉收率高的球形TiAl合金粉末。结果表明,将导热性好的石墨导流基座和耐冲刷的BN材质陶瓷导流内芯配合使用,既可以保证导流管加热,也可以有效阻止金属熔液的冲刷;螺旋喷管雾化器使雾化点下移,回流区位置远离导流管出口,解决了液柱反流的问题。螺旋分布管能够有效约束雾化气体,动能损失小,能够显著提高细粉收率达20%以上。实验制备的球形TiAl合金粉末流动性为27.7 [s·(50 g)?1],球形度>90%,粉末氧增量小,适用于3D打印和注射成型工艺用粉。  相似文献   

6.
为全面展示我国激光增材制造热点和发展态势,采集近十年CNKI数据库国内北大核心期刊发表激光增材制造技术论文511篇,借助CiteSpace可视化分析软件进行计量学和知识图谱分析,归纳梳理我国激光增材制造领域研究前沿及演进路径,以期为相关研究者提供有益借鉴。  相似文献   

7.
钨及钨合金具有熔点高、硬度大、高温强度高等优异性能,广泛应用于航空航天、国防军工、核工业、医疗放射屏蔽材料、电子等领域。增材制造(additive manufacturing, AM)是制备复杂结构钨及钨合金成形件的有效方法。激光选区熔化(selective laser melting, SLM)和电子束选区熔化(selective electron beam melting, SEBM)是制备钨及钨合金常用的两种AM技术,主要围绕原料粉末、成形工艺、合金化和后处理等因素对钨及钨合金成形件的致密度、微观组织、力学性能和缺陷等角度开展研究。由于纯钨的表面张力大、粘度大、润湿性差,纯钨成形件中易出现球化现象、裂纹和气孔3种缺陷,阐述了缺陷形成机制及解决措施。从材料体系、制备工艺、材料性能和数值模拟方面对未来SLM和SEBM技术制备钨和钨合金成形件的发展方向进行了展望,以期建立工艺参数-微观组织-缺陷特征-力学性能的内在联系,快速实现成形工艺的调控和优化。  相似文献   

8.
粉末冶金TiAl基合金及其力学性能的研究进展   总被引:1,自引:0,他引:1  
综述了粉末冶金法制备TiAl基合金的几种方法,包括预合金粉末法、元素粉末法、自蔓延高温合成、放电等离子烧结等方法,介绍了采用粉末冶金方法制备TiAl基合金的力学性能的研究,指出当前粉末冶金TiAl基合金制备中存在的问题及研究重点。  相似文献   

9.
镁合金是当前使用的最轻质的金属结构材料,相比于其它金属结构材料具有高比强度、高比刚度的优点。除此以外,镁合金还能够回收再利用。镁合金的这些特质能够在一定程度上促进工业领域实现轻量化,具有较为广阔的应用前景。增材制造技术则是近年来兴起的一种较为先进的制造技术,制造效率要远远高于传统制造技术。两相结合,镁合金增材制造技术的研究无疑拥有较好的应用前景。  相似文献   

10.
电弧增材制造(WAAM)技术将电弧作为热源,具备熔敷效率高、设备简单、成本较低的特点,在制备大型零件时具有更大的优势。基于3种典型电弧热源的电弧增材制造方法包括熔化极电弧(GMA)增材制造、非熔化极电弧(GTA)增材制造与等离子弧(PA)增材制造。GMA增材制造技术拥有熔敷效率高、易于实现等特点,特别是基于冷金属过渡(CMT)的增材制造技术取得了重要进展,主要缺点在于熔滴过渡对熔池的显著冲击易影响成形精度和质量。GTA增材制造技术具有最为稳定的电弧燃烧过程,具有无飞溅、成形精度与质量高等显著优势,特别适合于铝合金、镍基合金、钛合金等材料的增材制造。PA增材制造与GMA增材制造与GTA增材制造相比,存在能量密度高、集束性好等优点。但是PA合理参数区间较窄、参数匹配复杂、热输入大等缺点也限制了其在该领域的应用。由于增材制造过程使得后堆积层存在反复加热与冷却,增材制造成形件组织存在上中下区域的差异以及熔敷方向及垂直于熔敷方向性能的各向异性。增材制造金属材料的热循环过程对于晶粒尺寸、熔覆层性能以及成形精度非常关键,分别可以通过改变成形件冷却条件、改变熔池凝固条件对组织性能进行改善。新型电弧热源...  相似文献   

11.
NiTi作为一种形状记忆合金,具有优异的形状记忆效应、超弹性、耐腐蚀性、生物相容性,在生物医用、航空航天、微机电等领域均有着广泛的应用.增材制造(additive manufacturing,AM)技术作为一种新兴的加工方式,能够提高NiTi合金加工效率,并扩展NiTi合金应用领域.本文介绍了近年来国内外增材制造NiT...  相似文献   

12.
Laser additive manufacturing(LAM) is a new type technology combined with laser science, digital science and material science, it has many advantage, such as dimensionality reduction manufacturing, complex shapes manufacturing, and high utilization ratio of materials. According to the way of material inputting, it can be divided into selective laser melting(SLM) technology and laser melting deposition(LMD) technology. Laser additive manufacturing parts with fine grains and homogeneous microstructure has been widely used in aerospace field, due to its excellent mechanical properties. Recent developments in Ni- based laser additive manufacturing technology have been reviewed in the following aspects: technical principles, microstructure, mechanical properties, and density. It is noted that lightweight design and integration of structure- function may be the development tendency of laser additive manufacturing in the future.  相似文献   

13.
Compared with the parts prepared by conventional methods, the parts formed by metal additive manufacturing (MAM) technology are prone to have non equilibrium and sub micro cellular structures, which show more excellent performance. Especially, the 316L stainless steel formed by laser powder bed melting technology has high yield strength, good elongation, and excellent corrosion resistance. Aiming at the superfast thermal cycle, complex metallurgical reactions, intense non equilibrium solidification, and particular thermal history of MAM technologies, the current advances in the related fields of laser powder bed fusion 316L (L PBF 316L) austenitic stainless steel were systematically reviewed. The mechanical properties and corrosion mechanism of L PBF 316L and its influencing factors including microstructural features evolution and corresponding regulation were discussed. All importantly, the strengthening and toughening mechanisms of 316L deformation were thoroughly revealed. Finally, a brief prospect on the future research direction of additive manufacturing austenitic stainless steel was provided.  相似文献   

14.
摘要:金属增材制造技术成形奥氏体不锈钢易出现与传统制备方法完全不同的非平衡亚稳微观组织,表现出独特的性能,其中激光增材制造的316L不锈钢,兼具高屈服强度、良好的伸长率以及优异的耐腐蚀性能。系统综述了近年来国内外激光增材制造316L不锈钢的研究进展,针对其高冷却速率、微熔池冶金、强非平衡凝固和复杂热履历成形条件,阐述其微观组织结构的形成机制和调控方法,以及对力学性能和腐蚀行为的影响规律,重点分析了激光增材制造316L奥氏体不锈钢的强韧化机制,最后展望增材制造奥氏体不锈钢的未来研究方向。  相似文献   

15.
增材制造技术突破了传统模具加工工艺的限制,可用于高效个性化定制生物医用材料。近年来,医学上对骨骼修复和移植的个性化需求显著增加,增材制造可满足该定制化的需求,促使增材制造技术在生物医用材料领域占据重要地位。随着材料科学技术和计算机辅助技术(CAD/CAM)的发展,可用于增材制造的生物植入材料不再局限于钛系、钽系、钴铬钼等合金,聚醚醚酮、磷酸钙盐等非金属类材料因良好的生物相容性也得到了广泛应用,增材制造技术制备仿生人造骨植入体成为新的研究热点。本文介绍了增材制造技术的原理,对激光、电子束、光固化等增材制造技术进行了比较,并阐述了增材制造在生物植入体和医疗器械方面的应用现状,对增材制造技术在医疗领域的应用及发展做了展望。  相似文献   

16.
随形冷却模具一般具有复杂的异形流道,能够大大提高冷却效率和产品的表面质量,但是其加工难度非常大.增材制造是一种通过逐层累加实现构件成形的技术,其优势是能实现材料的内部复杂结构.粉末的制备是增材制造的基础也是关键步骤,粉末质量的高低一定程度上决定了增材件的好坏,常见的模具钢粉末制备方法有气雾化法和等离子旋转电极雾化法.增...  相似文献   

17.
综述了TiAl基合金中几种常见的组织演变,着重论述了变形TiAl基合金在热处理过程中的晶粒长大及动力学、TiAl基合金在冷却时层状组织的形成和全层状TiAl基合金在高温时的非连续粗化这3种组织演变。  相似文献   

18.
通过清洁炼钢、热轧、拉拔工艺开发了增材制造专用的低合金钢丝,并用此钢丝进行了激光3D打印试验。打印件的力学性能分别为屈服强度857 MPa、抗拉强度930 MPa、延伸率18%,-40℃的平均低温冲击韧性达到了118 J,可以满足900 MPa级海工用增材制造的使用。通过扫描电镜、透射电镜对打印件微观组织的分析,发现微观组织为粒状贝氏体、板条状贝氏体和弥散分布的马奥岛(M-A)组织,在贝氏体基体上弥散分布的马奥岛组织可以同时提高打印件的拉伸性能和冲击性能。  相似文献   

19.
The influence of thermomechanical processing on the microstructure of a range of TiAl-based alloys has been assessed using optical and electron microscopy, and the room-temperature mechanical properties have been determined. Long-term exposure at high temperatures has been used to assess the thermal stability of some of the structures generated through the different processing routes, and it has been found that the (gamma and alpha 2) lamellar structures, in some of the alloys, are unstable at 700 °C, a likely operating temperature. Addition of boron increases the stability of the lamellar structure. The influence of the difficulty of slip transfer between gamma and alpha 2 has been assessed as one of the factors limiting ductility in samples with this lamellar structure. In addition to the alloys produced via the ingot route, some atomized material has been produced and the microstructure and properties of hot-isostatically pressed “hipped” material assessed. Regions, high in titanium, are present in all atomized powders that have been examined, and these regions are found to initiate fracture at very low strains. These results are briefly discussed in terms of the factors that control the room-temperature strength and fracture behavior of TiAl-based alloys. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号