首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
金属增材制造技术是一种短流程、近终形的新型材料成形技术.在金属增材制造技术中, 设备是载体, 材料是关键, 工艺是基础, 三者是影响金属增材制造技术发展的关键因素.本文通过对具有代表性的金属增材制造技术的特点进行总结, 分析了设备、材料和工艺之间的关系以及三者在金属增材制造技术中的重要作用; 综述了金属增材制造设备的原料供给系统、成形系统和控制系统的研究现状; 总结了金属增材制造材料中钛合金、镍合金、铝合金和钢铁材料的典型组织特点和力学性能; 论述了金属增材制造工艺参数对残余应力、孔洞、精度和组织的影响; 指出了目前金属增材制造技术在设备方面存在设备成本高、产品成形尺寸受限、成形效率低等问题, 在材料方面存在生产成本高、适用性差等问题, 在工艺方面存在参数匹配困难、热积累严重等问题; 从降低设备和材料成本、扩大产品成形尺寸范围、提高产品精度和成形效率、拓展材料种类和适用范围、减少工艺参数匹配难度、提升产品质量及综合性能、开发金属增材制造新技术方面展望了金属增材制造技术的发展方向.   相似文献   

2.
金属增材制造技术自诞生以来,经快速发展,已在诸多领域得到了广泛的应用,被列入决定未来经济的十二大颠覆性技术之一。基于丝材的金属增材制造技术由于其沉积效率高、制造成本低、制造周期短和材料利用率高,近年来成为国内外研究和应用的热点。本文以钛合金丝材为原材料,针对广泛采用的电弧/等离子弧熔丝、电子束熔丝和激光熔丝增材制造技术,分别从成形工艺参数优化、宏微观组织结构分析、后热处理组织性能调控及专用原材料开发等方面所取得的最新研究成果进行了详细论述。在此基础之上,介绍了基于钛合金丝材的增材制造在工程化应用及相关标准规范的制定情况。最后,指出钛合金丝材增材制造技术在组织和性能等方面存在的固有不足,提出了采用锻造+增材复合成形复合后处理和专用丝材研制等方法,并建立有别于传统锻造和铸造的新标准体系,有助于推广其在各领域的大规模应用。  相似文献   

3.
电弧增材制造(WAAM)技术将电弧作为热源,具备熔敷效率高、设备简单、成本较低的特点,在制备大型零件时具有更大的优势。基于3种典型电弧热源的电弧增材制造方法包括熔化极电弧(GMA)增材制造、非熔化极电弧(GTA)增材制造与等离子弧(PA)增材制造。GMA增材制造技术拥有熔敷效率高、易于实现等特点,特别是基于冷金属过渡(CMT)的增材制造技术取得了重要进展,主要缺点在于熔滴过渡对熔池的显著冲击易影响成形精度和质量。GTA增材制造技术具有最为稳定的电弧燃烧过程,具有无飞溅、成形精度与质量高等显著优势,特别适合于铝合金、镍基合金、钛合金等材料的增材制造。PA增材制造与GMA增材制造与GTA增材制造相比,存在能量密度高、集束性好等优点。但是PA合理参数区间较窄、参数匹配复杂、热输入大等缺点也限制了其在该领域的应用。由于增材制造过程使得后堆积层存在反复加热与冷却,增材制造成形件组织存在上中下区域的差异以及熔敷方向及垂直于熔敷方向性能的各向异性。增材制造金属材料的热循环过程对于晶粒尺寸、熔覆层性能以及成形精度非常关键,分别可以通过改变成形件冷却条件、改变熔池凝固条件对组织性能进行改善。新型电弧热源...  相似文献   

4.
2015欧洲粉末冶金会议于2015年10月4—7日在法国兰斯(Reims)举行。本届大会报告的第二部分是关于金属增材制造的进展,David博士就会议中有关金属增材制造的6篇论文作了报告。这些论文涵盖了IN939高温合金制件的热处理、Ni718高温合金粉末的生产、喷墨金属增材制造和激光金属沉积(LMD)生产齿轮的进展。  相似文献   

5.
增材制造能够制备任意复杂形状的零件,具有快速、高效、经济、全智能化和全柔性化制造的优势.本文总结了国内外典型的金属增材制造技术,介绍了金属增材制造技术在核工业领域的应用,梳理了增材制造核材料产品的性能表现,并以实际案例证明了金属增材制造技术在核工业领域的优势.本文结合革新性反应堆技术在核材料中的应用背景,展望了增材制造...  相似文献   

6.
为深入分析金属增材制造技术分类和发展状况,采集中国期刊全文数据库(CNKI)收录的核心期刊上的768篇科技文献,借助文献分析可视化软件CiteSpace,对关键词聚类进行了全景式描绘,构建金属增材制造技术知识图谱,揭示该技术研究分类以及演化趋势。  相似文献   

7.
作为高性能复杂金属构件的新兴制造技术,增材制造已被应用于航空航天、汽车工业、医疗和核电等领域.金属增材制造工艺涉及传热、热力、相变及流动等复杂物理现象,不同尺度及跨尺度数值模拟结合实验验证可实现对增材制造过程中复杂物理现象的理解、调控及优化,为高质量、高精度、高性能金属构件的成形提供有力支撑.本文综述了宏观、介观、微观...  相似文献   

8.
增材制造技术与传统铸造、锻造等方式相比,具有成形时间短、成形精度高、设计更自由等优势,是材料加工领域中最具有应用前景的技术之一,金属增材制造技术已在航空领域中得到广泛研究和应用。本文从技术原理、研究现状、航空应用等方面介绍了5种主要的金属增材制造技术,对比分析了国内外金属增材制造技术在航空领域中的研究和应用现状,阐述了增材制造技术对航空领域发展的重要性,并对金属增材制造的发展前景做出展望。  相似文献   

9.
金属增材制造技术正朝着产业化的方向发展,钛粉是金属增材制造领域的主流原料之一。本文概述了钛及钛合金的熔炼技术,重点介绍了感应熔炼,并对目前主流的钛粉制备技术进行了对比和分析,包括基本原理、优缺点和影响粉末特性的因素等。此外,还介绍了数值模拟在钛粉制备上的应用,并对钛粉制备工艺在金属增材制造领域的发展做出了展望。  相似文献   

10.
文章对电弧熔丝增材制造技术(Wire and Arc Additive Manufacturing, WAAM)的发展历史、应用状况进行了全面的叙述,对各材料在制造过程中出现的共性缺陷(包括焊后变形、孔隙和裂缝等)的产生原因及各种提高制造质量的处理工艺进行了分析,最后结合现有的电弧熔丝增材制造材料流变、热流场密度、晶粒演化数学模型,从降低电弧熔丝增材制造制件缺陷,提升产品质量及综合性能,研发增材制造新算设备、新工艺、新数学模型方面对电弧熔丝增材制造技术的发展方向进行了展望。  相似文献   

11.
Wire arc additive manufacturing (WAAM) is particularly suitable for manufacturing large metal structure components. However, the anisotropy of mechanical properties of WAAM components cannot be avoided, which makes the mechanical properties of WAAM components unstable and seriously limits its engineering application. Herein, the tensile samples for 304 stainless-steel thin-walled structures along three directions (longitudinal, diagonal, and transverse) of the deposition layer are intercepted. The mechanical properties of the components are 9.3–54.6% higher than the standard values. The samples have obvious anisotropy characteristics. Samples with diagonal direction show the best mechanical properties, which are not affected by process parameters. The better the forming quality, the higher the mechanical properties of the samples. By correlating the mechanical properties results of the samples with the microstructures, it is found that very fine dendrites grow along the deposition direction in the samples, and this unique microstructure leads to the anisotropy of the mechanical properties. Under the action of uniaxial tensile load, the growth direction of precise dendrite in the sample with diagonal direction is almost the same as the slip direction of the maximum dislocation plane, which is the reason for the excellent mechanical properties of the sample with diagonal direction.  相似文献   

12.
禹润缜  余圣甫  齐膑  代轶励 《钢铁》2021,56(10):136-145
 电弧增材制造是成形高性能HSLA钢构件的重要新方法。为了明晰HSLA钢在电弧增材制造时的组织演变行为,研究了构件在堆积成形时的温度场、热循环、热影响区分区及其组织转变。结果表明,电弧增材制造过程中,HSLA钢堆积金属包含凝固区与热影响区,热影响区可分为粗晶区、正火区和回火区。凝固区在热循环作用下先后转变为粗晶区、正火区,最终成为回火区;同时,堆积金属中的残留铁素体晶核、夹杂物附近的高密度位错、铁素体感生形核、第二相质点钉扎晶界和连续动态再结晶共同促进组织细化,使粗大的柱状晶、块状铁素体、侧板条铁素体以及少量针状铁素体、珠光体演变为细小的等轴铁素体和珠光体,有利于提高构件强韧性并抑制力学性能各向异性。构件垂直与水平抗拉强度分别为519.6、520.8 MPa,-20 ℃冲击功分别为124.7、122.1 J。  相似文献   

13.
难熔金属材料具有良好的高温力学性能和高温稳定性,常用于制备耐热部件,被广泛应用于航空航天、国防工业等领域。然而,难熔金属的熔点比较高,室温塑性延展性能不佳,使用传统的加工方式制备复杂结构件时存在加工困难等问题。增材制造作为一项新兴的技术,基于三维模型数据,以激光、电子束、特殊波长光源、电弧及其多种组合作为能量源,利用“离散-堆积”成形原理制造实体部件,制备零件的尺寸可以从微米级到米级,为难熔金属复杂结构件的制备提供了新的途径。本文首先概述了增材制造技术的分类、特点及其应用,然后介绍了增材制造技术制备难熔金属的现状以及目前存在的主要问题,最后综述了增材制造工艺调控难熔金属材料微观组织和力学性能的研究进展,并对增材制造技术在难熔金属领域应用的发展方向进行了展望。  相似文献   

14.
Wire and arc additive manufacturing (WAAM) is a novel manufacturing technique in which large metal components can be fabricated layer by layer. In this study, the macrostructure, microstructure, and mechanical properties of a Ti-6Al-4V alloy after WAAM deposition have been investigated. The macrostructure of the arc-deposited Ti-6Al-4V was characterized by epitaxial growth of large columnar prior-β grains up through the deposited layers, while the microstructure consisted of fine Widmanstätten α in the upper deposited layers and a banded coarsened Widmanstätten lamella α in the lower layers. This structure developed due to the repeated rapid heating and cooling thermal cycling that occurs during the WAAM process. The average yield and ultimate tensile strengths of the as-deposited material were found to be slightly lower than those for a forged Ti-6Al-4V bar (MIL-T 9047); however, the ductility was similar and, importantly, the mean fatigue life was significantly higher. A small number of WAAM specimens exhibited early fatigue failure, which can be attributed to the rare occurrence of gas pores formed during deposition.  相似文献   

15.
硬质合金是由难熔金属碳化物(WC,TiC,NbC等)和金属粘结相(如Fe,Ni和Co)组成,通过粉末混合、压制然后烧结而成。然而传统的粉末冶金成形方法模具成本高,难以形成复杂零件。相比之下,增材制造(3D打印)采用数字化叠层加工技术,能够实现快速精准的成形。研究与开发适于增材制造的硬质合金粉末是其中的关键一步,目前,增材制造的硬质合金粉末制备方法主要分为以下4类:机械合金化法、球形WC粉末表面包覆技术、喷雾干燥技术、等离子体球化技术,这4种方法在制备原理、成本和成形方法的灵活性上均有所不同。因此,综述了适用于增材制造成形的硬质合金粉末的4种制备方法,并对制备粉末的特性以及成形性能进行了对比,总结了粉末制备原理、各自的优缺点以及适用的增材制造成形工艺,希望可以推动增材制造成形硬质合金的研究发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号