首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
汪荣贵  姚旭晨  杨娟  薛丽霞 《光电工程》2019,46(6):180416-1-180416-10
现有的细粒度分类模型不仅利用图像的类别标签,还使用大量人工标注的额外信息。为解决该问题,本文提出一种深度迁移学习模型,将大规模有标签细粒度数据集上学习到的图像特征有效地迁移至微型细粒度数据集中。首先,通过衔接域定量计算域间任务的关联度。然后,根据关联度选择适合目标域的迁移特征。最后,使用细粒度数据集视图类标签进行辅助学习,通过联合学习所有属性来获取更多的特征表示。实验表明,本文方法不仅可以获得较高精度,而且能够有效减少模型训练时间,同时也验证了进行域间特征迁移可以加速网络学习与优化这一结论。  相似文献   

2.
针对实际生产中不同种类轮毂的混流生产问题,提出了一种基于环形特征的卷积神经网络轮毂识别算法。将直角坐标下的环形轮毂映射到极坐标中,归一化为标准形式的矩形,提取轮毂图像的环形特征信息,减少冗余特征产生的影响;设计了一种改进的VGG网络架构,利用深度可分离卷积打破输出通道维度与卷积核大小的联系,在不损失网络性能的同时降低了计算量,能够在实际生产中轮毂识别任务在有限的算力情况下实时进行计算;从有效性和实时性两个方面对轮毂识别算法进行评估,且通过Inception V3、SVM、KNN等模型的对比实验,验证了该算法可以实时地对轮毂自适应分类。实验表明: 该方法对轮毂图像的处理精度达到99%以上,单幅图像平均处理时间降低至11.78ms。  相似文献   

3.
为了对生产线上的轮毂进行识别分类,本文开发了一套基于OpenCV和MFC平台的轮毂型号在线识别系统.首先提取轮毂的高度、外直径、中心孔直径、辐条数目、幅窗的周长面积比等特征参数.其中,通过图像预处理、边缘检测、圆拟合、系统标定等方法获取轮毂外直径,来表征各类轮毂的尺寸;通过提取辐条数目、中心孔直径、幅窗的周长面积比等具有旋转不变性的常量来表征各类轮毂的形状.然后为提取到的特征参数生成序列号,作为型号识别的特征参数.最后将生成的特征序列号与模板库中的标准数值进行比对,达到在线实时分类的效果.实验结果表明:该系统的识别准确率为98.7%,能够有效地完成轮毂的在线识别分类,为轮毂缺陷检测的自动化、智能化提供了保障.  相似文献   

4.
5.
张永志  辛全忠  王永亮  孔祥明  刘昉  杨再胜 《材料导报》2021,35(24):24152-24157
金相检验是分析钢内部组织的常用方法,其中检验图像由人工判别,容易受到主观因素的影响而造成结果的不确定.近年来,深度学习(Deep learning,DL)方法中的卷积神经网络(Convolutional neural networks,CNN)能从原始图像中学习复杂的特征,在图像分类与识别领域得到了广泛的应用.CNN建模需要大量的训练样本才能达到较好的泛化能力,材料科学与工程领域针对具体问题的数据集往往较小,不能满足CNN建模的条件,制约了DL在材料领域的应用.本研究基于lmageNet数据集预训练VGG19模型,对火力发电机组耐热钢金相检验图像进行识别,采用冻结全部卷积层权值和微调部分卷积层权值两种迁移学习方法,可以克服金相图像数据集较小的问题,实现小样本数据集的深度学习建模,两种方法的准确率分别为92.5%和94.2%.微调方式的迁移学习CNN模型具有较快的收敛速度、较高的训练精度与泛化能力,能够对金相组织图像进行较为准确的分类与识别,是一种智能的钢金相组织识别方法,也是自动化分类与识别钢金相组织的一种新方法.  相似文献   

6.
针对变工况下空间滚动轴承寿命阶段识别时因样本分布差异较大、可训练用寿命阶段样本较少以及不同寿命阶段样本数量不均等所造成的寿命阶段识别准确率较低的问题,提出模型无关元迁移学习(Model-Agnostic Meta-Transfer Learning, MAMTL)用于空间滚动轴承寿命阶段识别。在MAMTL中,将模型无关元学习和迁移学习相结合以实现多任务同步平行训练从而代替传统的迭代训练,多个任务损失函数利用不同工况下无类标签样本和历史工况下少量有类标签样本共同更新MAMTL网络参数,以寻求网络参数的全局最优解,这使MAMTL具有更好的泛化能力,因此MAMTL在较少历史工况有类标签训练样本情况下比传统迁移学习具有更好的域适配性;在MAMTL中构建新型原型网络以将历史工况每一类别的样本表示为一个原型,通过计算当前工况待测样本与原型的相似度完成当前工况待测样本分类,且该分类过程无需参数学习,因此可防止样本不均等情况下对于不同类别样本识别精度差距较大和在少量有类标签训练样本情况下网络出现过拟合的问题,从而更好提高分类精度。MAMTL的以上优势使得它可利用空间滚动轴承历史工况下的少量、非均等已知...  相似文献   

7.
宫颈癌是全球第二高发的女性癌症,但是如果及时发现,其治愈率几乎为100%.阴道镜检查是临床筛查宫颈上皮内瘤变(CIN)和早期宫颈癌的重要步骤之一,直接影响患者的诊断方案.然而,这种方法取决于阴道镜检查者的观察.本文建立了宫颈图像的数据集,并提出了一种基于Efficientnet的宫颈图像分类的方法.实验结果表明,该模型取得了比经典深度学习方法更好的分类性能,其分类结果准确率可达90.56%.  相似文献   

8.
近年来,患阿尔茨海默病(Alzheimer’s Disease, AD)的人数逐年增加。临床研究显示,轻度认知障碍(Mild Cognitive Impairment, MCI)转化为AD的概率很大,因此,提高磁共振成像(Magnetic Resonance Imaging, MRI)和正电子发射断层扫描(Positron Emission Tomography, PET)等神经影像图对AD、 MCI的分类准确率十分必要。为了解决数据量少、标注困难的问题,首先使用CycleGAN网络对缺少的PET图进行生成;然后采用基于区域能量融合准则的小波变换算法对MRI图和PET图进行图像融合,能够极大程度的保留图像中的数据信息;最后利用迁移学习技术对轻量级网络MobileNet进行训练与微调。实验结果显示,在数据量较少的情况下,所提方法在泛化能力较好的同时,也获得了较高的准确率。  相似文献   

9.
张二虎 《中国测试》2023,(5):137-144
针对异步电机故障诊断中,故障数据样本少导致传统深度神经网络模型泛化能力差的问题,提出一种异构迁移学习的异步电机故障诊断算法。首先,通过仿真平台模拟异步电机故障,以解决故障数据样本少的问题;其次,对正常和故障状态下的电流电压信号进行小波变换,作为深度学习网络的输入;然后,基于多核最大平均差异方法,获得仿真数据和实测数据的深度特征差异,对深度学习神经网络参数微调,使其深度学习特征具有跨域不变性。最终,在实验平台上验证文中所提算法,实验结果表明,该算法的故障诊断准确率高,依赖实测故障数据样本少。  相似文献   

10.
利用迁移学习算法提高分类识别的准确率是运动想象脑机接口应用的热点研究问题,其中样本迁移和特征迁移的传统模型算法在样本量较少或源域数据和目标域数据差异较大情况时,各自的迁移效果并不理想。基于欧式对齐(EA)和改进联合类质心匹配和局部流形自学习(CMMS)迁移学习的运动想象分类算法,将样本迁移和特征迁移的优势有机结合,在考虑样本本身的同时,进一步提高了分类准确率。首先,对样本进行源域和目标域的EA,减少源域和目标域的数据分布差异;其次,基于最小化最大均值差异(MMD)改进CMMS方法,筛选源域数据,再次减小源域样本与目标域的分布差异;最后,将该方法应用于BCI竞赛数据集进行离线测试和在线实验。实验结果表明:所研究的方法与SVM、JDA、BDA、EasyTL、GFK、CMMS相比较,迁移学习模型的识别准确率分别提高了14.38%,8.5%,5.8%,10.4%,11.8%,5.7%。  相似文献   

11.
张立国  刘博  金梅  孙胜春  张勇 《计量学报》2021,42(12):1578-1584
针对现有的单一细粒度识别模型不能识别无训练样本花卉子类这一实际情况,结合DCL与KNN提出了一种将细粒度特征映射到高维空间自动分类的方法,实现无训练样本的子类分类。同时针对同一花卉子类特征较为相似且可能存在类间样本不均衡问题,改进了DCL模型的损失函数(focal loss),通过对比损失(contrastive loss)加大子类的类间距,用focal loss平衡类别损失。最后在308类样本不均衡的牡丹花上进行实验。实验结果表明:改进算法后有训练样本的子类准确率为0.932,F1值为0.925,较原始DCL算法有了较大的提升,对未训练样本的子类准确率为0.903,F1值为0.888。  相似文献   

12.
汽车轮毂加工过程中产生的表面缺陷严重影响整车的美观性及服役性能,针对人工检测效率低、漏检率高的问题,提出一种基于改进YOLOv4算法的轮毂表面缺陷检测方法。构建了轮毂缺陷数据集,其包含6种表面缺陷,由2346张4928×3264pixel的图像组成;采用K-means方法进行先验框聚类,并针对YOLOv4算法在纤维、粘铝等小尺度缺陷上检测精度不足问题,在原网络Neck部分引入细化U型网络模块(TUM)和注意力机制,用于增强有效特征并抑制无效特征,强化多尺度特征提取与融合,改善特征处理过程中可能存在的小目标信息丢失问题;基于该数据集,训练并测试不同算法的缺陷检测性能并验证改进模块的有效性。结果表明,该方法大幅提升了粘铝等小尺寸缺陷的检测能力,缺陷检测平均精度达到85.8%,与多种算法相比较检测精度最高。  相似文献   

13.
    
Human gait recognition (HGR) has received a lot of attention in the last decade as an alternative biometric technique. The main challenges in gait recognition are the change in in-person view angle and covariant factors. The major covariant factors are walking while carrying a bag and walking while wearing a coat. Deep learning is a new machine learning technique that is gaining popularity. Many techniques for HGR based on deep learning are presented in the literature. The requirement of an efficient framework is always required for correct and quick gait recognition. We proposed a fully automated deep learning and improved ant colony optimization (IACO) framework for HGR using video sequences in this work. The proposed framework consists of four primary steps. In the first step, the database is normalized in a video frame. In the second step, two pre-trained models named ResNet101 and InceptionV3 are selected and modified according to the dataset's nature. After that, we trained both modified models using transfer learning and extracted the features. The IACO algorithm is used to improve the extracted features. IACO is used to select the best features, which are then passed to the Cubic SVM for final classification. The cubic SVM employs a multiclass method. The experiment was carried out on three angles (0, 18, and 180) of the CASIA B dataset, and the accuracy was 95.2, 93.9, and 98.2 percent, respectively. A comparison with existing techniques is also performed, and the proposed method outperforms in terms of accuracy and computational time.  相似文献   

14.
巨志勇  马素萍 《包装工程》2019,40(21):30-35
目的为了提高果蔬农产品识别的准确性,使果蔬农产品分类实现自动化。方法利用深度卷积神经网路强大的特征学习和特征表达能力,来自动学习果蔬种类特征,提出基于位置的柔性注意力算法,对Inceptionv3神经网络进行改进,并结合参数迁移学习方法建立果蔬识别模型;针对果蔬种类繁多,且国内外缺乏完善的果蔬图像数据库这一现状,构建果蔬图像数据集;在此数据集上将文中所提出的果蔬识别算法与其他果蔬识别算法进行对比。结果试验结果表明,在学习率为0.1、迭代次数为5000时,文中提出算法的准确率高达97.89%。结论相较于现有果蔬识别算法,所提出的果蔬识别算法的识别性能最优,鲁棒性最强。  相似文献   

15.
图片卫士:一个自动成人图像识别系统   总被引:4,自引:0,他引:4  
设计并实现了一个自动识别成人图像识别系统“图片卫士”。图片卫士采用3层识别框架,利用肤色、纹理、图像视觉特征分层逐级识别成人图像。为了可靠地检测到图像中的肤色区域,提出了一种新的自适应统计肤色模型。在肤色检测基础上,通过皮肤纹理验证过程,图像中的人体皮肤区域被准确地分割出来。基于图像中皮肤区域,提取9个经验特征来表示图像内容,并采用AdaBoost算法构造一个总体分类器进行图像分类,识别正常图像和成人图像。在算法评估中,建立了一个78205幅图像的测试集,其中59885幅为正常图像,18320幅为成人图像。图片卫士显示了良好的系统性能,具有成人图像88.5%的识别率,正常图像92.5%的识别率。在PentiumⅣ1.5GHz的个人计算机上,图片卫士的平均处理速度为正常图像每秒5.6幅和成人图像每秒1.9幅。图片卫士可以应用在个人计算机或网络传输中,实时监控和过滤成人图像,还可以为网络安全等应用提供技术支持。  相似文献   

16.
针对复杂场景下手势分割准确性低,手势细粒度特征描述不充分和手势识别实时性差的问题,提出融合批量再标准化和YOLOv3的手势识别算法.首先,在复杂背景及不同光照条件下采集20种手势,运用数据增广策略进行样本扩充并建立标准手势库;然后通过K均值维度聚类获取训练集手势锚点框,负责对不同尺度手势进行检测;最后利用迁移学习和微调...  相似文献   

17.
为了去除雨天图像上附着的雨滴并恢复图像的清晰度,提出一种基于深度学习思想结合图像增强技术融合残差及通道注意力机制来实现的单幅图像去雨方法。首先,利用导向滤波将有雨图像分解为平滑基本层和高频细节层;其次,提出自适应Gamma校正算法增强平滑基本层以提高对比度;然后,构建融合残差块和通道注意力机制的深度神经网络实现高频细节层去雨;最后,将去雨后的高频细节层与增强后的平滑基本层融合实现单幅图像去雨功能。实验结果表明:与具有代表性的单幅图像去雨方法相比,所提方法效果较好并可保留更多的图像细节信息。  相似文献   

18.
蒋峰  罗黎明  陈建军  于军 《计量学报》2018,39(6):902-907
为提高细胞内产物的产量以及质量,结合机器视觉技术,在传统Hough图像识别算法以及现有的细胞破碎装置的基础上进行改进,提出了一种应用于细胞破碎的智能监测计数系统的设计方案。该方案以光学放大电路、CCD图像传感电路为硬件平台,辅以机器视觉技术、图像处理算法实现对细胞破碎过程的图像监测及计数统计。在线实验监测表明,该智能监测计数系统能够完成对细胞破碎的统计计数,其识别速度相对于标准的Hough图像识别算法提高了近10倍,并能实时捕捉细胞破碎图像,可应用于细胞破碎产物的自动化提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号