首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
2.
近年来深度学习技术不断进步,随着预训练模型在自然语言处理中的应用与发展,机器阅读理解不再单纯地依靠网络结构与词嵌入相结合的方法。预训练语言模型的发展推动了机器阅读理解的进步,在某些数据集上已经超越了人类的表现。简要介绍机器阅读理解以及预训练语言模型的相关概念,综述当下基于预训练模型的机器阅读理解研究进展,对目前预训练模型在相关数据集上的性能进行分析,总结了目前存在的问题并对未来进行展望。  相似文献   

3.
顾迎捷  桂小林  李德福  沈毅  廖东 《软件学报》2020,31(7):2095-2126
机器阅读理解的目标是使机器理解自然语言文本,并能够正确回答与文本相关的问题.由于数据集规模的制约,早期的机器阅读理解方法大多基于人工特征以及传统机器学习方法进行建模.近年来,随着知识库、众包群智的发展,研究者们陆续提出了高质量的大规模数据集,为神经网络模型以及机器阅读理解的发展带来了新的契机.对基于神经网络的机器阅读理解相关的最新研究成果进行了详尽的归纳:首先,概述了机器阅读理解的发展历程、问题描述以及评价指标;然后,针对当前最流行的神经阅读理解模型架构,包括嵌入层、编码层、交互层和输出层中所使用的相关技术进行了全面的综述,同时阐述了最新的BERT预训练模型及其优势;之后,归纳了近年来机器阅读理解数据集和神经阅读理解模型的研究进展,同时,详细比较分析了最具代表性的数据集以及神经网络模型;最后展望了机器阅读理解研究所面临的挑战和未来的研究方向.  相似文献   

4.
机器阅读理解与问答一直以来被认为是自然语言理解的核心问题之一, 要求模型通过给定的文章与问题去挑选出最佳答案. 随着BERT等预训练模型的兴起, 众多的自然语言处理任务取得了重大突破, 然而在复杂的阅读理解任务方面仍然存在一些不足, 针对该任务, 提出了一个基于回顾式阅读器的机器阅读理解模型. 模型使用RoBERTa预...  相似文献   

5.
机器阅读理解要求机器能够理解自然语言文本并回答相关问题,是自然语言处理领域的核心技术,也是自然语言处理领域最具挑战性的任务之一.抽取式机器阅读理解是机器阅读理解任务中一个重要的分支,因其更贴合实际情况,更能够反映机器的理解能力,成为当前学术界和工业界的研究热点.对抽取式机器阅读理解从以下四个方面进行了全面地综述:介绍了...  相似文献   

6.
针对目前机器阅读理解的研究进展,对机器阅读理解的研究背景和国内外研究现状进行详细介绍,着重介绍国内外主流的大规模机器阅读理解数据集,以及在各个数据集上的评价指标。介绍神经机器阅读理解模型,并对向量化、编码、注意力机制、答案预测模块做了详细的介绍。总结当前机器阅读理解所面临的问题,并展望未来的发展趋势。  相似文献   

7.
机器阅读理解是自然语言处理领域的研究热点之一,对提升机器阅读能力和智能水平有着重要意义,为跟进相关领域的研究进展对其进行综述。首先,介绍机器阅读理解的发展历程及主要任务;其次,重点梳理当前选择式机器阅读理解基于深度学习方法的相关工作,并从语义匹配、预训练模型、语义推理、外部知识四个方面展开叙述;归纳总结了相关数据集以及评价指标;最后,对选择式机器阅读理解的未来发展趋势进行了展望。  相似文献   

8.
近年来,基于深度神经网络的模型在几乎所有自然语言处理任务上都取得了非常好的效果,在很多任务上甚至超越了人类.展现了极强能力的大规模语言模型也为自然语言处理模型的发展与落地提供了新的机遇和方向.然而,这些在基准测试集合上取得很好结果的模型在实际应用中的效果却经常大打折扣.近期的一些研究还发现,在测试数据上替换一个相似词语、增加一个标点符号,甚至只是修改一个字母都可能使得这些模型的预测结果发生改变,效果大幅度下降.即使是大型语言模型,也会因输入中的微小扰动而改变其预测结果.什么原因导致了这种现象的发生?深度神经网络模型真的如此脆弱吗?如何才能避免这种问题的出现?这些问题近年来受到了越来越多的关注,诸多有影响力的工作都不约而同地从不同方面讨论了自然语言处理的鲁棒性问题.在本文中,我们从自然语言处理任务的典型范式出发,从数据构建、模型表示、对抗攻防以及评估评价等四个方面对自然语言处理鲁棒性相关研究进行了总结和归纳,并对最新进展进行了介绍,最后探讨了未来的可能研究方向以及我们对自然语言处理鲁棒性问题的一些思考.  相似文献   

9.
机器阅读理解是自然语言处理中的一项重要而富有挑战性的任务.近年来,以BERT为代表的大规模预训练语言模型在此领域取得了显著的成功.但是,受限于序列模型的结构和规模,基于BERT的阅读理解模型在长距离和全局语义构建的能力有着显著缺陷,影响了其在阅读理解任务上的表现.针对这一问题,该文提出一种融合了序列和图结构的机器阅读理...  相似文献   

10.
近年来,随着互联网的高速发展,网络内容安全问题日益突出,是网络治理的核心任务之一。文本内容是网络内容安全最为关键的研究对象,然而自然语言本身固有的模糊性和灵活性给网络舆情监控和网络内容治理带来了很大的困难。因此,如何准确地理解文本内容,是网络内容治理的关键问题。目前,文本内容理解的核心支撑技术是基于自然语言处理的方法。机器阅读理解作为自然语言处理领域中的一项综合性任务,可以深层次地分析、全面地理解网络内容,在网络舆论监测和网络内容治理上发挥着重要作用。近年来,深度学习技术已在图像识别、文本分类、自然语言处理等多个领域中取得显著成果,基于深度学习的机器阅读理解方法也被广泛研究。特别是近年来各种大规模数据集的公开,加快了神经机器阅读理解的发展,各种结合不同神经网络的机器阅读模型被相继提出。本文旨在对神经机器阅读模型进行综述。首先介绍机器阅读理解的发展历史和研究现状;然后阐述机器阅读理解的任务定义,并列举出有代表性的数据集以及神经机器阅读模型;再介绍四种新趋势目前的研究进展;最后提出神经机器阅读模型当前存在的问题,并且分析机器阅读理解如何应用于网络内容治理问题以及对未来的发展趋势进行展望。  相似文献   

11.
针对现有的机器阅读理解模型主要使用循环模型处理文本序列信息,这容易导致训练和预测速度慢且模型预测准确性不高等问题,提出了一种片段抽取型机器阅读理解算法QA-Reader.该算法利用大型预训练语言模型RoBERTa-www-ext获取问题和上下文的词嵌入表示;使用深度可分离卷积和多头自注意力机制进行编码;计算上下文和问题的双向注意力及上下文的自注意力,以融合上下文和问题之间的关联信息,拼接得到最终的语义表征;经过模型编码器预测得到答案,模型针对不可回答的问题计算了其不可回答的概率.在中文片段抽取型机器阅读理解数据集上进行了实验,结果表明QA-Reader模型与基线模型相比,其性能方面EM和F1值分别提高了3.821%、2.740%,训练速度提高了0.089%.  相似文献   

12.
Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain's visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we hope to also provide inspiration for future advances in automated visual processing.  相似文献   

13.
基于现有模型不能有效处理多轮对话历史的不足,提出了CoBERT-BiGRU(concat bidirectional encoder representation from transformers-bidirectional gate recurrent unit)模型.对文章中的对话历史进行标记,将不同标记的文章及问题输入CoBERT模型,得到多个序列的向量化表示;通过历史注意力网络把多个结果融合成一个序列的向量化表示;将融合后的结果输入BiGRU,对答案及对话行为进行推理预测.真实数据集上的实验结果表明,CoBERT-BiGRU模型能够有效处理多轮对话历史,与基准模型和在该数据集上已公开的部分模型相比,HEQ-Q、HEQ-D和F1值都有提升.  相似文献   

14.
文本分类技术是自然语言处理领域的研究热点,其主要应用于舆情检测、新闻文本分类等领域。近年来,人工神经网络技术在自然语言处理的许多任务中有着很好的表现,将神经网络技术应用于文本分类取得了许多成果。在基于深度学习的文本分类领域,文本分类的数值化表示技术和基于深度学习的文本分类技术是两个重要的研究方向。对目前文本表示的有关词向量的重要技术和应用于文本分类的深度学习方法的实现原理和研究现状进行了系统的分析和总结,并针对当前的技术发展,分析了文本分类方法的不足和发展趋势。  相似文献   

15.
王元龙 《计算机应用》2017,37(6):1741-1746
阅读理解任务需要综合运用文本的表示、理解、推理等自然语言处理技术。针对高考语文中文学作品阅读理解的选项题问题,提出了基于分层组合模式的句子组合模型,用来实现句子级的语义一致性计算。首先,通过单个词和短语向量组成的三元组来训练一个神经网络模型;然后,通过训练好的神经网络模型来组合句子向量(两种组合方法:一种为递归方法;另一种为循环方法),得到句子的分布式向量表示。句子间的一致性利用两个句子向量之间的余弦相似度来表示。为了验证所提方法,收集了769篇模拟材料+13篇北京高考语文试卷材料(包括原文与选择题)作为测试集。实验结果表明,与传统最优的基于知网语义方法相比,循环方法准确率在高考材料中提高了7.8个百分点,在模拟材料中提高了2.7个百分点。  相似文献   

16.
王元龙  刘晓敏  张虎 《计算机应用》2022,42(7):1979-1984
要真正理解一段语篇,在阅读理解过程对原文主旨线索的把握是非常重要的。针对机器阅读理解中主旨线索类型的问题,提出了基于事件表示的机器阅读理解分析方法。首先,通过线索短语从阅读材料中抽取篇章事件图,其中包括事件的表示、事件要素的抽取和事件关系的抽取等;然后,综合考虑事件的时间要素、情感要素以及每个词在文档中的重要性,采用TextRank算法选出线索相关的事件;最后,依据所选出的线索事件构建问题的答案。在收集了339道线索类题组成的测试集上,实验结果表明所提方法在BLEU和CIDEr评价指标上与基于TextRank算法的句子排序方法相比均有所提升,具体来说,BLEU-4指标提升了4.1个百分点,CIDEr指标提升了9个百分点。  相似文献   

17.
关于深度学习的综述与讨论   总被引:2,自引:0,他引:2       下载免费PDF全文
机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形成了机器学习领域最亮眼的一个新分支——深度学习,也掀起了机器学习理论、方法和应用研究的一个新高潮。对深度学习代表性方法的核心原理和典型优化算法进行了综述,回顾与讨论了深度学习与以往机器学习方法之间的联系与区别,并对深度学习中一些需要进一步研究的问题进行了初步讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号