首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath. Taking the typical parameters of plasma sheath at the height of 71 km as an example, the distribution characteristics and time evolution characteristics of plasma density in the flow field under the action of pulsed magnetic field, as well as the effect of self-electric field on the distribution of plasma density, are studied. The simulation results show that pulsed magnetic field can effectively reduce the density of plasma sheath. Meanwhile, the simulation results of three-dimensional plasma density distribution show that the size of the density reduction area is large enough to meet the communication requirements of the Global Position System(GPS) signal. Besides, the location of density reduction area provides a reference for the appropriate location of antenna. The time evolution of plasma density shows that the effective density reduction time can reach 62% of the pulse duration, and the maximum reduction of plasma density can reach 55%. Based on the simulation results, the mechanism of the interaction between pulsed magnetic field and plasma flow field is physically analyzed. Furthermore, the simulation results indicate that the density distributions of electrons and ions are consistent under the action of plasma self-electric field.However, the quasi neutral assumption of plasma in the flow field is not appropriate, because the self-electric field of plasma will weaken the effect of the pulsed magnetic field on the reduction of electron density, which cannot be ignored. The calculation results could provide useful information for the mitigation of communication blackout in hypersonic vehicles.  相似文献   

2.
A pulsed transverse magnetic field with pulse width of 12 ms and magnitude of 2 T was used to modify the density distribution of a weakly-ionized plasma flow with strong collisions between the charged particles and neutrals.The morphology of the plasma is changed substantially,with the density increased upstream and decreased downstream.Meanwhile,the plasma toward the axis contracts laterally and gradually converges to a collimated flow.In addition,a drift wave is observed to be excited in the inhomogeneous plasma by the magnetic field.  相似文献   

3.
The triple Langmuir probe enables measurements of the transient plasma parameters over time at a point of interest. We demonstrate how these measurements can be easily combined to obtain a visualization of the overall plasma behavior of a pulsed plasma thruster. Through this, it is possible to identify features in the expansion of the plasma such as the canting angle of the plume. We also identified the early arrival of a negatively canted low-density plasma plume. The 2D profiles also reveal data that would otherwise be obscured by other planes in optical measurements.  相似文献   

4.
The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional model of the magnetic field is built and is validated by comparing the simulated results with the experimental results in literature.The magnetic flux density in the discharge channel during the working process is presented and analyzed regarding the electrode structures.The calculated magnetic field flux density decreases from 0.8 T at the upstream to 0.1 T and below at the downstream in the discharge channel(68 J).The peak of the magnetic flux density over time lags behind the current peak,which provides evidence for the existence of a moving plasma sheet in the discharge process.The magnetic field induced by the current in the extra bending part of the anode enhances the Lorentz force,which acts on the charged particles near the propellant.Finally,the geometric study indicates that the electromagnetic impulse bit does not monotonically increase with the flared angle of the electrodes.Instead,it reaches a maximum at a certain flared angle,which could provide significant suggestions for structural optimization.  相似文献   

5.
脉冲强磁场探测系统的基本实现   总被引:1,自引:0,他引:1  
简要介绍了电磁感应法测量脉冲强磁场的原理,并对基于此原理的探测系统进行了实现,最后对实验结果予以分析,给出了主要误差来源.  相似文献   

6.
Plasma in the discharge channel of a pulsed plasma thruster (PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail. The computational results of the electron number density, which is in the order of 1023 m−3, show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.  相似文献   

7.
We report a simple-to-perform technique to investigate the distribution of the azimuthal magnetic field induction, Bθ, and the induced magnetic force acting on the plasma current sheath(PCS) in a plasma focus(PF) discharge. This in situ measurement technique can undoubtedly be beneficial when other fast-imaging techniques are not available. techniques are not available. Experimental work was conducted in the low-energy Mather-type EAEA-PF1 device operated in argon. The axial distribution(Bθ)_z along the coaxial electrodes system was measured with a four magnetic-probe set technique at different radial distances(r=2.625×10~(-2) to 4.125×10~(-2) m) within the annular space between the coaxial electrodes during the 1 st and 2 nd half cycles of the discharge current waveform, where inner electrode of coaxial electrode system has a +ve polarity and-ve polarity, respectively. Axial,radial and total magnetic force distribution profiles were estimated from Bθdata. Investigation of PCS shape in terms of its inclination(curvature) angle, θ, along the axial rundown phase and the correlation between the magnetic forces per unit volume acting on the PCS, the inclination angle θ of the PCS,and the formation of a powerful PF action during the 1 st and 2 nd half cycles is carried out.Dependence of inclination angle, θ, on total magnetic force per unit volume acting on PCS axial motion was studied, separately, during the 1 st and 2 nd half cycles.  相似文献   

8.
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion, a novel laser ablation pulsed plasma thruster is proposed, which separated the laser ablation and electromagnetic acceleration. Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster. The spectral lines at different times,positions and discharge intensities are experimentally recorded, and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines. With the discharge energy of 24 J, laser energy of 0.6 J and the use of aluminum propellant, the specific impulse and thrust efficiency reach 6808 s and 70.6%, respectively.  相似文献   

9.
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B_0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5?×?10~(-3)?-?10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B_0of 6300 G.Ar HWP with electron density~10~(18)–10~(20)m~(-3)and electron temperature~4–7 e V was produced at high B_0 of 5100 G,with an RF power of 1500 W.Maximum Ar~+ion flux of 7.8?×?10~(23)m~(-2)s~(-1)with a bright blue core plasma was obtained at a high B_0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar~+ion-beams of 40.1 eV are formed,which are supersonic(~3.1c_s).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1?×?10~(24)N_2/m~2 h.  相似文献   

10.
A novel laser-assisted pulsed plasma thruster (LA-PPT) is proposed as an electric propulsion thruster, which separates laser ablation and electromagnetic acceleration. It aims for a higher specific impulse than that achieved with conventional LA-PPTs. Owing to the short-time discharge and the novel configuration, the physical mechanism of the discharge is unclear. Time and spatial-resolved optical emission spectroscopy was applied to investigate the variation in the plasma properties in the thruster discharge channel. The plasma species, electron temperature, and electron density were obtained and discussed. Our investigation revealed that there were Hα, Hβ, Hγ, Hε atoms, C I, C II, C III, C IV, Cl I, Cl II particles, and a small amount of CH, C3, C2, H2 neutral molecular groups in the plasma. The electron temperature of the discharge channel of the thruster was within 0.6–4.9 eV, and the electron density was within (1.1–3.0) $\times $ 1018 cm−3, which shows that the optical emission spectroscopy method is to measure the electron excitation temperature and electron density in heavy particles. But the Langmuir probe method is to measure the temperature and density of free electrons. The use of laser instead of spark plug as the ignition mode significantly changed the plasma distribution in the discharge channel. Unlike the conventional PPT, which has high electron density near the thruster surface, LA-PPT showed relatively large electron density at the thruster outlet, which increased the thruster specific impulse. In addition, the change in the ignition mode enabled the electron density in the LA-PPT discharge channel to be higher than that in the conventional PPT. This proves that the ignition mode with laser replacing the spark plug effectively optimised the PPT performance.  相似文献   

11.
The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations. It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field, and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant. Moreover, the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced, which is attributed to the increased average electron energy. We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.  相似文献   

12.
This paper presents direct numerical simulations (DNS) of fully developed turbulent liquid-metal flow in a circular duct entering a magnetic field. The case of a magnetohydrodynamic flow leaving a strong magnetic field has been extensively studied experimentally and numerically owing to its similarity to typical flow configurations appearing in liquid metal blankets of nuclear fusion reactors. Although also relevant to the design of fusion reactor blankets, the flow entering the fringing field of a magnet remains unexplored because its high intricacy precludes any simplification of the governing equations. Indeed, the complexity of the magnetohydrodynamic–turbulence interaction can only be analysed by direct numerical simulations or experiments. With that purpose, this paper addresses the case of a fully developed turbulent flow (Reτ  520) entering low, intermediate and strong magnetic fields under electrically insulating and poorly conducting walls by means of three-dimensional direct numerical simulations. Purely hydrodynamic computations (without the effect of the magnetic field) reveal an excellent agreement against previous experimental and numerical results. Current MHD results provide a very detailed information of the turbulence decay and reveal new three-dimensional features related to liquid-metal flow entering strong increasing magnetic fields, such as flow instabilities due to the effect of the Lorentz forces within the fringing region at high Ha numbers.  相似文献   

13.
With regard to the lower density and energy of electrons in pulsed discharge plasma (PDP) at atmosphere, leading to the lower energy utilization of plasma, we propose a MgO cathode to enhance the plasma intensity according to field emission principle. The MgO cathode is prepared by an electro-depositing MgO film on a stainless steel plate. This way, the positive charges come to the cathode and accumulate on the surface of the MgO film, leading to the enhancement of the electric field intensity between the cathode and MgO film, and result in the strong emission of secondary electrons from the MgO cathode. As a result, the intensity of plasma can be enhanced. Herein, the effect of the MgO cathode on the intensity of PDP is investigated. It was shown that the discharge peak current was improved by 20% compared with that of without the MgO cathode. With increasing the MgO film thickness, discharge intensity, including the peak current, transforming charge and spectrum intensity first increased and then decreased. Higher enhancement of peak current, transforming charge and spectrum intensity were acquired with a higher peak voltage. Compared to a cathode without MgO film, the ozone production is higher with MgO cathode employed. The research proposes a novel approach for improving the intensity of discharge plasma, and also provides a reference for further application of PDP.  相似文献   

14.
In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A particular emphasis was given to the plume dynamics(shape,size) with the combined effects of ambient gas pressures and an external magnetic field.Free expansion,sharpening effect,and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures.Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes,such as plume splitting,elliptical geometry changes,radial expansion,and plume confinement.Furthermore,the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.  相似文献   

15.
In this work,the reversal of radial glow distribution induced by reversed magnetic field is reported.Based on the Boswell antenna which is symmetric and insensitive to the magnetic field direction,it seems such a phenomenon in theory appears impossible.However,according to the diagnostic of the helicon waves by magnetic probe,it is found that the direction of magnetic field significantly affects the propagation characteristic of helicon waves,i.e.,the interchange of the helicon waves at the upper and the lower half of tube was caused by reversing the direction of magnetic field.It is suggested that the variation of helicon wave against the direction of magnetic field causes the reversed radial glow distribution.The appearance of the traveling wave does not only improve the discharge strength,but also determines the transition of the discharge mode.  相似文献   

16.
An improved surface wave plasma source equipped with a cylindrical quartz rod has been developed, which has great potential in processing inner wall of cylindrical workpieces. A cylindrical quartz rod not only excites the plasma around the rod, but also guides surface wave plasma along the rod. The distributions of plasma density and plasma temperature under different incident microwave powers and pressures are diagnosed by a Langmuir probe. The electron density near the rod is around the order of 10^11cm^-3. When the incident power is 450 W, the length of surface wave plasma column can reach up to 420 mm at 20 Pa.  相似文献   

17.
Pulsed plasma thrusters(PPTs) are an attractive form of micro-thrusters due to advantages such as their compactness and lightweight design compared to other electric propulsion systems.Experimental investigations on their plasma properties are beneficial in clarifying the complex process of plasma evolution during the micro-second pulse discharge of a PPT. In this work, the multi-dimensional evolutions of the light intensity of the PPT plasma with wavelength, time, and position were identified. The plasma pressure was obtained using an iterative process with composition calculations. The results show that significant ion recombination occurred in the discharge channel since the line intensities of CII, CIII, CIV, and FII decreased and those of CI and FI increased as the plasma moved downstream. At the center of the discharge channel, the electron temperature and electron density were in the order of 10 000 K and 10~(17) cm~(-3),respectively. These had maximum values of 13 750 K and 2.3?×?10~(17) cm~(-3) and the maximum temperature occurred during the first half-cycle while the maximum number density was measured during the second half-cycle. The estimated plasma pressure was in the order of 10~5 Pa and exhibited a maximum value of 2.69?×?10~5 Pa.  相似文献   

18.
本文介绍了应用于脉冲磁场测量系统中的模拟有源积分器的研制.针对测量系统的需求和精度要求,设计了积分电路,并对实际有源积分电路的设计参数和器件参数做了误差分析,论证了电路的可行性和合理性,并给出了合理电路设计的有关参数和误差控制范围.电路实验和测试表明,脉冲磁场测量模拟有源积分器电路达到了设计要求,可满足磁测系统的需求.  相似文献   

19.
Silver(Ag)plasma has been generated by employing Nd∶YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak signals of fast and slow Ag plasma ions have been identified.Both energy and flux of fast and slow ions tend to increase with increasing irradiance from 7 GW cm-2 to 17.9 GW cm-2 at all distances of FC from the target surface.Similarly a decreasing trend of energies and flux of ions has been observed with increasing distance of FC from the target.The maximum value of flux of the fast component is 21.2×1010cm-2,whereas for slow ions the maximum energy and flux values are 8.8 keV,8.2×1012 cm-2 respectively.For the analysis of plume expansion dynamics,the angular distribution of ion flux measurement has also been performed.The overall analysis of both spatial and angular distributions of Ag ions revealed that the maximum flux of Ag plasma ions has been observed at an optimal angle of~15°.In order to confirm the ion acceleration by ambipolar field,the self-generated electric field(SGEF)measurements have also been performed by electric probe;these SGEF measurements tend to increase by increasing laser irradiance.The maximum value of 232 V m-1 has been obtained at a maximum laser irradiance of 17.9 GW cm-2.  相似文献   

20.
We present in this paper the comparison of an electric double layer (DL) in argon helicon plasma and magnetized direct current (DC) discharge plasma. DL in high-density argon helicon plasma of 13.56 MHz RF discharge was investigated experimentally by a floating electrostatic probe and local optical emission spectroscopy (LOES). The DL characteristics at different operating parameters, including RF power (300–1500 W), tube diameter (8–60 mm), and external magnetic field (0–300 G), were measured. For comparison, DL in magnetized plasma channel of a DC discharge under different conditions was also measured experimentally. The results show that in both cases, DL appears in a divergent magnetic field where the magnetic field gradient is the largest and when the plasma density is sufficiently high. DL strength (or potential drop of DL) increases with the magnetic field in two different structures. It is suggested that the electric DL should be a common phenomenon in dense plasma under a gradient external magnetic field. DL in magnetized plasmas can be controlled properly by magnetic field structure and discharge mode (hence the plasma density).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号