首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The research on a 30 mm electrothermal-chemical (ETC) gun including theoretical simulation and experimental results is presented in this paper. The predictions of the theoretical model which is composed of three parts (i.e., pulse forming network, plasma generator and interior ballistics) are in good agreement with the experiments. In addition, we have performed some liquid propellant and solid propellant experiments, respectively. Among the solid propellant experiments, we have investigated the ignition modes of propellant and high velocity launchers. As a result, the 25 : 75 mixture of octane and hydrogen peroxide has a better effect than other liquid propellants. When the propellants are ignited nearby the bottom of projectile in chamber by using an ullage tube connected with the plasma generator, the kinetic energy of projectile will increase, while the chamber pressure will decrease. With a total input electrical energy of 180 kJ, the exit velocity of projectile is up to 2.1 km/s or so.  相似文献   

2.
Photo ionization plays a critical role in the formation and propagation of atmospheric pressure plasma jet plumes. But in experiments, it is very difficult to observe the photo ionization due to its relative lower density of photo electrons. In the present study, we develop a portable cold air plasma jet device and observe the ionization wave in a dc spark air plasma jet. The discharge images acquired by an ICCD camera show that the ionization wave front performs as a quickly moving bright ball. Breakdown could take place at another side of the quartz plate or pork tissue layer(6 mm thick), which suggests that the ionization should be attributed to photo ionization.The laser schlieren images indicate there is propagation of a shock wave along with the plasma bullet. Based on the photo ionization theory and the photo-electric measurement, the direct photo ionization and multistage photo ionization are the main factors in charge of generating the cold air plasma jet. In addition, the plasma jet outside of the cathode nozzle is colder than 320 K and can be touched safely by a human. In view of the plasma jet including a large amount of active particles, such as NO, O, OH, emitted photons, etc, the proposed portable cold air plasma jet device could be qualified for plasma bio-medicine applications.  相似文献   

3.
In this paper,a low pressure Ar/N2 shock plasma jet with clearly multicycle alternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion analysis.Plasma emission intensity,electron,vibrational and rotational temperatures of the shock plasma have been measured in the expansion and compression zones.The results indicate that the ranges of the measured electron temperature,vibrational temperature and rotational temperature are 1.1 eV to 1.6 eV,0.2 eV to 0.7 eV and 0.19 eV to 0.22 eV,respectively,and it is found for the first time that the vibrational and rotational temperatures increase while the electron temperature decreases in the compression zones.The electron temperature departs from the vibrational and the rotational temperatures due to non-equilibrium plasma efects.Electrons and heavy particles could not completely exchange energy via collisions in the shock plasma jet under the low pressure of 620 Pa or so.  相似文献   

4.
In this work, a typical pin-to-pin plasma synthetic jet in static air is excited by a pulsed DC power supply. The influences of the pulse rising time, the amplitude and the repetition frequency of the pulse voltage on the jet flow have been investigated. First, using a high-speed Schlieren imaging technique, the induced shock waves and the fast jet flow generated by the plasma synthetic jet are characterized. With a deposited energy of 44 mJ per pulse, the velocity of the shock wave and the maximum velocity of the jet flow reach 320 m s−1 and 100 m s−1, respectively. Second, when the applied voltage increases from 12.8 kV to 16 kV, the maximum jet velocity increases from 66 m s−1 to 93 m s−1. On the other hand, as the pulse rising time varies from 50 ns to 500 ns, or the pulse repetition frequency increases from 5 Hz to 40 Hz, the jet velocity induced by the plasma synthetic jet is weakly dependent. In addition, a comparative study of the plasma synthetic jets using three commercial pulsed power supplies (XJ-15, NPG- 18, and PG-30) is implemented. It reveals that the maximum jet velocity of 120 m s−1 is obtained in the case of PG-30, with the longest pulse rising time and the lowest breakdown voltage, while the maximum velocity of 33 m s−1 is detected in the case of NPG-18, even though it has the shortest pulse rising time and the highest breakdown voltage.  相似文献   

5.
A major issue of plasma synthetic jet actuator(PSJA)is the severe performance deterioration at high working frequency.In this study,experiments and numerical simulation are combined together to investigate the influence of thermal conductivity,throat length(Lth)and discharge duration(Td)on the high-frequency characteristics of PSJA.Results show that the variation of the actuator thermal conductivity and discharge duration will not alter the saturation frequency of the actuator,whereas decreasing the throat length results in an increase of the saturation frequency.For a short-duration capacitive discharge of 1.7 μs,a clear shock wave is issued from the orifice,followed by a weak jet.As a comparison,when the discharge duration is increased up to 202.6 μs,a strong jet column is formed and no obvious shock wave can be visualized.Based on numerical simulation results,it becomes clear that the long-duration pulse-DC discharge is able to heat the cavity gas to a much higher temperature(3141K)than capacitive discharge,greatly improving the conversion efficiency of the arc discharge energy to the internal energy of the cavity gas.In addition,high-speed Schlieren imaging is deployed to study the performance degradation mechanism of PSJA at high working frequency.Monitor of the exit jet grayscale indicates that as long as the saturation frequency is exceeded,the actuator becomes unstable due to insufficient refresh time.The higher the discharge frequency,the more frequently the phenomenon of'misfires'will occur,which explains well the decaying jet total pressure at above saturation frequency.  相似文献   

6.
Due to the recent developments in high power lasers it is suggested to accelerate a micro-foil by the laser pressure to relativistic velocities. The time dependent velocity of this micro-foil is calculated analytically for pulsed constant laser intensity. The accelerated foil collides with a target creating a shock wave on impact. The shock wave parameters are calculated within the context of relativistic fluid dynamics.It is suggested to use the energy of the relativistic micro-foil to ignite a pre-compressed target with a density relevant for fusion ignition. The equations are written and solved for the collision between the micro-foil and the very dense target. The criteria for shock wave ignition and heat wave ignition are used to show that one needs significantly less laser energy for heat wave ignition.The present scheme shows that nuclear fast ignition by micro-foil impact could be attained in the near future with lasers that are currently under construction.  相似文献   

7.
Electron density, collision frequency and electron extinction rates have been computed from microwave absorption measurements on the exhaust plumes of solid propellant rocket motors burning CsNO3:Al and KNO3:Al The plasma was generated by burning the fuel at a chamber pressure above 100 psi, and expanding the gases through an orifice to an ambient pressure of 1 Torr. The plume consists of both gases and solid particles which modify the aerodynamic flow. High speed movies together with grid wires in the flow field were used to define the plume. Microwaves operating at frequencies up to 70 gc were used for measuring the plasma properties.  相似文献   

8.
A new and simple type of electron gun is presented.Unlike conventional electron guns,which require a heated filament or extractor,accelerator and focusing electrodes,this gun uses the collimated electron microchannels of an inertial electrostatic confinement(IEC) discharge to achieve the same outcome.A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge.Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode.This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid.The internal operating pressure range of the gun is 35-190 m Torr.A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential.The chamber was operated at pressures of 4-12 m Torr.The measured current produced by the gun was 0.1-3 m A(0.2-14 m A corrected measurement) for discharge currents of 1-45 m A and discharge voltages of 0.5-12 k V.The collimated electron beam emerges from the aperture into the vacuum chamber.The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun.This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.  相似文献   

9.
To increase the thrust-weight ratio in next-generation military aeroengines,a new integrated afterburner was designed in this study.The integrated structure of a combined strut-cavity-injector was applied to the afterburner.To improve ignition characteristics in the afterbumer,a new method using a plasma jet igniter was developed and optimized for application in the integrated afterburner.The effects of traditional spark igniters and plasma jet igniters on ignition processes and ignition characteristics of afterburners were studied and compared with the proposed design.The experimental results show that the strut-cavity-injector combination can achieve stable combustion,and plasma ignition can improve ignition characteristics.Compared with conventional spark ignition,plasma ignition reduced the ignition delay time by 67 ms.Additionally,the ignition delay time was reduced by increasing the inlet velocity and reducing the excess air coefficient.This investigation provides an effective and feasible method to apply plasma ignition in aeroengine afterburners and has potential engineering applications.  相似文献   

10.
A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length,ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.  相似文献   

11.
An ablation-dominated capillary discharge using low atomic number elements for plasma formation to flow into an ablation-free extension barrel is a concept that provides a high energy–density plasma flow sufficient to propel fuel pellets into the tokamak fusion plasma chamber. In this concept, the extension barrel is made from a non-ablating material by coating the interior wall of the barrel with nanocrystalline diamond to eliminate mixing the propelling plasma with any impurities evolving from the barrel ablation. The electrothermal plasma code ETFLOW models the plasma formation and flow in the capillary discharge and the flow into the extension barrel to accelerate frozen deuterium pellets. The code includes governing equations for both the capillary and the extension barrel, with the addition of the pellet’s terms. It also includes ideal and non-ideal plasma conductivity models. The joule heating term in the energy conservation equation is only valid in the capillary section. The pellet momentum and kinetic energy are included in the governing equations of the barrel, with the addition of the effect of viscous drag terms. The electrothermal capillary source generates the plasma via the ablation of a sleeve inside the main capillary housing. The acceleration of the pellet starts in the extension barrel when the pressure of the plasma flow from the capillary reaches the release limit. The code results show pellet exit velocities in excess of 2 km/s for source/barrel systems with low-Z liner materials in the source for 5, 20, 45, and 80 mg pellets. The study shows that an increase in the length of both the source and the extension barrel increases the pellet exit velocity with the limitation of slowdown effects for plasma expansion and cooling off inside the barrel.  相似文献   

12.
In this work, an Ar plasma jet generated by an AC-microsecond-pulse-driven dielectric barrier discharge reactor, which had two ring-shaped electrodes isolated from the ambient atmosphere by transformer oil, was investigated. By special design of the oil insulation, a chemically active Ar plasma jet along with a safe and stable plasma process as well as low emission of CO and NOx were successfully achieved. The results indicated that applied voltage and frequency were basic factors influencing the jet temperature, discharge power, and jet length, which increased significantly with the two operating parameters. Meanwhile, gas velocity affected the jet temperature in a reverse direction. In comparison with a He plasma jet, the Ar plasma jet had relatively low jet temperature under the same level of the input parameters, being preferable for bio-applications. The Ar plasma jet has been tested to interact with human skin within 5 min without the perception of burnt skin and electrical shock.  相似文献   

13.
Whereas high voltage and current create a rough environment for switch electrodes in pulse power technology, the switch requires the most maintenance or replacement after a short time. In this paper we investigate the effects of magnetic and shock pressures created by high power electric arc between a rail gap switch with copper electrodes at the APF plasma focus device. As studied by others, the shock pressure is some order of magnitude higher than the magnetic pressure after electric arc generation. We calculated the magnetic pressure, electric arc radius, time dependent arc velocity, and also time dependent shock pressure created by an oscillating current discharge applied across the rail gap electrodes surface. Modeling included a MathCAD analysis of the diverging wave front through the electrode and the results show that the shock wave pressure induced after the electric arc has a serious destructive effect on our switch surface.  相似文献   

14.
Demonstrative experiments on the variation patterns of the position, angle, and intensity of shock wave are presented. Different means of aerodynamic actuation, such as variations of the distance between discharge channels, the number of discharge channels, the DC discharge voltage, the angle of ramp, and the application of magnetic field, in a supersonic flow of M=2.2 are employed. Results of both the schlieren and pressure test indicated that when the plasma aerodynamic actuation is applied, the starting point of the shock wave was shifted 1 to 8mm upstream on average, the shock wave angle was reduced 4% to 8% on average, and the shock wave intensity was decreased by 8% to 26%. The local plasma aerodynamic actuation could generate an extrusive plasma layer with high temperature and pressure. This plasma layer caused an upstream-shift of the separating point of the boundary layer, which changed the structure of the original shock wave. Moreover, in a simulation study, the plasma aerodynamic actuation was simplified as a thermal source term added to the Navier–Stokes equations, after all, the results obtained showed consistency with the experimental results.  相似文献   

15.
A high-speed charge-coupled device camera was used to capture images of the plume and acceleration channel of a Hall effect thruster during ignition at different discharge voltages. To better understand the influence of changes in the discharge voltage on the plasma parameters during thruster ignition, a particle-in-cell numerical model was used to calculate the distribution characteristics of the ion density and electric potential at different ignition moments under different discharge voltages. The results show that when the discharge voltage is high, the ion densities in the plume and acceleration channel are significantly higher at the initial phase of thruster ignition; with the gradual strengthening of the ignition process, the propellant avalanche ionization during thruster ignition occurs earlier and the pulse current peak increases. The main reason for these phenomena is that the change in the discharge voltage results in different energy acquisitions of the emitted electrons entering the thruster channel.  相似文献   

16.
《等离子体科学和技术》2016,18(11):1110-1115
Ignition is a key system in pulse detonation engines(PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current(AC) driven low-temperature plasma using dielectric barrier discharge(DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter,and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.  相似文献   

17.
In this paper, the air plasma jet produced by micro-hollow cathode discharge(MHCD) is investigated. The discharge is powered by a positive nanosecond pulse high voltage supply. The waveforms of the discharge, the images of the jet, the evolution of the plasma bullet and the reactive species are obtained to analyze the characteristics of the MHCD plasma jet. It is found that the length of the plasma jet is almost proportional to the air flow rate of 2–6 slm. Two plasma bullets appear one after another during a single period of the voltage waveform, and both of the two plasma bullets are formed during the positive pulse voltage off. The propagation velocity of the two plasma bullets is on the order of several hundred m/s, which is approximate to that of the air flow. These results indicate that the gas flow has an important influence on the formation of this MHCD plasma jet.  相似文献   

18.
High-temperature ignition is essential for the ignition and combustion of energetic metal fuels,including aluminum and magnesium particles which are protected by their highmelting-temperature oxides.A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions.A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests.The steam plasma rapidly stabilizes in both plasma and steam jet modes.Parametric investigation of the steam plasma jet is conducted in terms of arc strength.A high-speed camera and an oscilloscope method visualize the discharge characteristics,and optical emission spectroscopy measures the thermochemical properties of the plasma jet.The diatomic molecule OH fitting method,the Boltzmann plot method,and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature,excitation temperature,and OH radical distribution,respectively.The excitation temperature at the nozzle tip is near 5500 K,and the gas temperature is 5400 K.  相似文献   

19.
Line broadening of He I 4471 Å and He ‖ 4686 Å radiated from plasma generated in a Marshall type coaxial plasma gun are measured by a 340 cm Ebert type spectrometer. Doppler shift measurements indicates that a plasma blob is accelerated during about 5 μsec from the initiation of gun discharge and leaves the plasma gun, while an unacceleratee 1 plasma remains in the gun throughout the discharge period. Most of the line broadening on the He ‖ 4686 Å is due to Doppler broadening, and Stark broadening is negligible. The accelerated plasma from the gun gradually loses the velocity component perpendicular to the axis of the plasma gun as it travels through the vacuum vessel.  相似文献   

20.
We present preliminary results of the High Density Plasma Injection Experiment at the Maryland Centrifugal Experiment (MCX). HyperV Technologies Corp. has designed, built, and installed a prototype coaxial gun to drive rotation in MCX. This gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. An array of diagnostics indicates the gun is capable of plasma jets with a mass of 160 μg at 70 km/s with an average plasma density above 1015 cm−3. Preliminary measurements are underway at MCX to understand the penetration of the plasma jet through the MCX magnetic field and the momentum transfer from the jet to the MCX plasma. Data will be presented for a wide range of MCX field parameters, and the prospects for future injection experiments will be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号