首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
海水中存在大量污染物,其中悬沙颗粒会对海水液压元件造成不同程度的冲蚀磨损;配流阀的冲蚀磨损会降低海水泵的容积效率,使用离散项模型对水介质下悬沙颗粒对海水泵配流阀的冲蚀磨损现象进行数值模拟计算,研究阀口开度与入口流速对球型配流阀阀芯及阀座冲蚀磨损的影响.结果表明:不同阀口开度下阀座表面的冲蚀位置有明显差异,而阀芯表面冲蚀...  相似文献   

2.
满足油液清洁度要求的液压油中仍存在固体颗粒物,这些固体颗粒在油液带动下会撞击滑阀空间流道,使滑阀产生冲蚀磨损,导致其性能退化。针对上述问题,结合计算流体力学与冲蚀理论,进行了滑阀磨损过程的数值模拟,得到滑阀全寿命周期磨损规律:滑阀的进出口压差增大,使颗粒的撞击速度和颗粒流量增大,加剧了滑阀磨损;阀口开度增大,节流口处从层流转变至湍流,同时也增大了颗粒流量,使滑阀磨损程度增大,且在不同阀口开度下,滑阀的磨损区域不同;同一节流口处,不同的油液流向,节流边两侧的磨损程度不同;节流磨损轮廓表明,阀芯的径向磨损和阀套的轴向磨损会导致滑阀控制性能下降,且阀芯的磨损较阀套更严重。  相似文献   

3.
为了探究钢铁行业卸灰阀磨损的规律,应用气固两相流离散相模型(DPM),对蘑菇头卸灰阀进行磨损特性分析。并探究阀门开度、颗粒质量流量对蘑菇头卸灰阀冲蚀磨损情况的影响以及改进结构后冲蚀磨损率的变化。结果表明:对于蘑菇头卸灰阀,随着阀门开度的增大,磨损率总体成下降趋势;随着质量流量的增大,磨损率先增大后趋于平稳。改进结构后的分相密封卸灰阀在结构上更具有优势,磨损率更小。  相似文献   

4.
外流式液压滑阀工作时,其阀口处容易受污染颗粒的冲蚀而产生磨损,针对这一问题,对滑阀阀芯取倒角时的结构进行了分析,对滑阀阀芯锐边的冲蚀磨损改善情况进行了研究.首先,绘制了滑阀的二维模型,并采用了Edwards模型来对冲蚀情况进行分析;然后,在阀口开度为0.1 mm~0.6 mm,流量为10 L/min~40 L/min状...  相似文献   

5.
官通  郭勇  尹升 《机械设计与研究》2014,(2):115-118,127
为了解决动臂下降过慢的问题,提高其可控性,以小型挖掘机多路阀动臂联阀为研究对象,采用CFD软件对节流槽及阀内流动进行仿真,表明P~A的流量过小且流量系数变化区间较大。通过试验对改进后的阀芯进行流量特性的测试。获得了P~A口和P~T口流量系数随阀芯位移的变化规律。结果表明:流量系数是随阀芯位移的变化而变化的,对于P~A口,在小开度时,流量系数为负值,而在大开度时也只能到达0.24;同一阀芯,不同节流口,流量系数的变化不一样,P~T口流量系数变化呈现先增大后减小的趋势;改变通过节流口的流量对阀口流量系数的影响不大;通过合理配置P~A口和P~T口过流面积的大小,可以使阀口流量系数的变化更平缓。  相似文献   

6.
针对煤气化装置黑水阀的冲蚀磨损问题,分析了黑水阀冲蚀磨损失效机理、过程与条件,实现黑水阀的失效预测分析,获得关键部位的损伤速率;采用B/S架构方式搭建黑水闪蒸处理系统的智能防控体系,实现黑水阀流动参数的实时监测。结果表明:黑水阀内含固流体在流经节流区域时,固体颗粒以切削等方式高速冲击阀门壁面,导致阀芯以及阀座部位出现较严重损伤,且阀芯部位的冲蚀磨损率较阀座部位高出1个数量级,最高达到2×10-6 kg/(m2·s),但其磨损率会随着开度增加而减小。智能防控体系通过实时信号采集、二次信号采集和软测量建模等技术手段,实现装置的运行状态实时监测并提出针对性的工艺防护方案,使黑水闪蒸阀门使用寿命延长91%以上,有利于指导黑水闪蒸处理系统的安全稳定长周期运行,进而为煤气化系统的安全运行提供保障。  相似文献   

7.
固体颗粒对水力旋流器冲蚀磨损特性的影响   总被引:1,自引:0,他引:1  
针对工业污水处理系统中水力旋流器壁面的冲蚀磨损问题,采用FLUENT软件中RSM模型和DPM模型模拟水力旋流器内液、固两相流的流动情况,并以Grant和Tabakoff碰撞模型求解器壁冲蚀磨损速率。研究了不同颗粒流速、粒径和质量流量条件下器壁冲蚀磨损规律以及最大冲蚀磨损位置。结果表明:旋流器壁面最大冲蚀磨损率随着颗粒流速的增大而呈指数递增,与质量流量呈正相关关系,但与颗粒粒径呈不完全线性增长关系;旋流器壁面冲蚀磨损率随着颗粒流速、粒径和质量流量的改变而不同,其中颗粒流速变化的影响最大、质量流量次之、粒径的影响最小;固体颗粒碰撞和磨削旋流器壁面而引起局部磨损,并且影响最大冲蚀磨损区域的出现位置。  相似文献   

8.
射流管伺服阀的油液被污染后,其中的颗粒在高速射流下会对滑阀产生冲蚀磨损,从而影响伺服阀的工作性能.针对上述问题,建立射流管伺服阀的AMESim模型;结合计算流体动力学与冲蚀磨损理论,建立滑阀的冲蚀磨损数学模型.通过有限元仿真软件,模拟颗粒对滑阀的冲蚀磨损;基于射流管伺服阀的AMESim模型,分析滑阀磨损对伺服阀工作性能...  相似文献   

9.
针对高端液压元件因滑阀冲蚀磨损引起阀口轮廓变动与性能不确定性问题,考虑颗粒物撞击阀口的概率事件,提出了基于Edwards冲蚀模型的全周边滑阀冲蚀圆角定量计算方法,并以阀控对称缸为例,揭示了四边滑阀各阀口冲蚀后的轮廓及阀特性的演化规律。研究结果表明,阀口的冲蚀圆角由颗粒物尺寸、颗粒物数量、撞击速度、阀口大小等因素直接决定;阀口流量越大、颗粒物数量越多、压差越大,颗粒物的撞击速度就越大;颗粒物尺寸相对阀口开度越大,颗粒物撞击阀口的概率就越大;在阀控缸动力机构中,液压缸的结构尺寸、运动速度、负载决定了各个阀口流量、压降和阀口开度。在负载恒定、液压缸恒速情况下,阀控对称缸4个阀口的流量相同但压降不同,冲蚀后的阀口圆角不一致。冲蚀导致滑阀压力增益降低,泄漏量增大,且产生零偏,零偏位移可通过惠斯通桥路平衡原理求出。  相似文献   

10.
高频小流量高速开关阀用于汽车防抱死制动系统 (ABS)增压与减压的控制,在不同温度环境下,其可靠的动态特性是ABS正常工作的重要指标。高速开关阀阀芯高频运动过程中,主要受到电磁力、液压力等因素的影响。针对液压力,建立高速开关阀不同温度、阀口两端压差、阀口开度的有限元仿真模型,分析温度、阀口两端压差和阀口开度不同时,高速开关阀液压力的变化规律。仿真结果得知,在相同的阀口开度和压差下,液压力随温度的升高而减小;阀口开度越大,液压力受温度的影响越大;同一压差和温度下,液压力随阀口开度的增大而减小。通过探寻温度、阀口两端压差及阀口开度大小对高速开关阀液压力的影响,为准确研究高速开关阀动态特性提供理论依据,从而为提高汽车ABS响应特性奠定理论基础。  相似文献   

11.
A 2D high-frequency rotary directional control valve with a spool having two degrees of freedom for axial linear motion and circumferential rotation is proposed in this paper. The axial linear motion decides the maximum orifice area, and the circumferential rotation lets the orifice area change continuously. One of the known elements impacting valve function is the flow force. This paper systematically analyzes the steady and transient flow torques subjected to the valve through theoretical analysis, AMESim-Fluent joint simulation and experimental tests. The results show that: under a single variable, the flow torques of the 2D high-frequency rotary directional control valve initially increase and then decrease like the sinusoid curve with the rotation of the spool and reach the maximum when the orifice opening is 1/2, and the flow torques are always in the direction of orifice closing and want to close the orifice. When the orifice area increases, the flow torques are the resistance, preventing the spool from opening; when the orifice area decreases, the flow torques are the power, pushing the spool to close. The steady flow torques are proportional to the pressure drop. The direction of the transient flow torque is independent of the relative position of the spool groove and sleeve window, which proportional to the square root of the pressure drop, orifice area and rotational speed. The flow torques are so important in the control of valve and can not be negligible.  相似文献   

12.
The erosion of the valve orifice can easily lead to the performance degradation of the hydraulic servo spool valve, which seriously affects the service life and reliability of the hydraulic servo system. In this paper, the erosion micro-morphological characteristics, erosive transient process visualization of solid particles, and factors affecting the erosion rate of the spool working edges were investigated. The results showed that there was a significant “edge collapse” phenomenon on the working edges of the spool, which was mainly characterized by surface peeling, notches, grooves, chamfers, and the radius of the fillet which fluctuated violently in the circumferential direction. The “smoothing, slipping, and somersaulting” evolution process started when the incident angle increased and the particles hit the valve orifice by a new visualization experiment model composed of the nozzle-baffle submerged jet. The erosion rate of the working edges also showed continuous fluctuations and violent changes, with strong scatter-like distribution characteristics. The erosion rate of the working edge in the up-flow field was approximately one time higher than that in the back-flow field. The erosion rate of the working edges increased as the oil viscosity and particle concentration increased. Under small openings, the impact frequency of particles and the working edge increased significantly. The distribution law of the erosion rate of the working edge agreed with the distribution characteristics of the erosion fillet radius of the working edges. The erosion rate variance was defined, which can be used to quantify the circular distribution of erosion rate. This study provides further understanding of the mechanism and influencing factors of the hydraulic servo spool valve erosion.  相似文献   

13.
该文利用CFD计算方法研究某新设计的带有节流窗口的比例流量阀的阀芯位移-流量的特性,并与通常采用的小孔出流的计算公式所得的结果进行比较,证明在阀芯开度较小时,两种结果具有很好的一致性,但是随着阀口开度的逐渐增大,两者计算结果的差别越来越大,从传统的设计经验判断,CFD计算出的流量特性曲线具有很高的可信度。  相似文献   

14.
内流式滑阀壁面压力分布可视化计算及试验验证   总被引:2,自引:0,他引:2  
针对现有液压阀流场(Computational fluid dynamics,CFD)仿真研究中,采用单相流模型进行计算,忽略了流体气化现象对流体密度及其流场的影响,仿真所得相对压力过低与实际不符的问题,运用Fluent软件,采用两相流模型,研究内流式滑阀流场分布,分析阀口开度、流量变化对于阀芯壁面压力分布及其稳态液动力的影响;设计一种壁面压力分布测量的试验方案,测量得到阀芯壁面的压力分布,并通过表面积积分法求出阀芯所受稳态液动力。结果表明:试验所得的内流式滑阀的壁面压力分布及其稳态液动力与仿真结果趋势一致,壁面压力峰值随着阀口开度的增大而减小;阀口开度较小时,稳态液动力的方向为阀口关闭的方向,在阀口开度达到临界点时,稳态液动力的方向为阀口打开的方向;滑阀稳态液动力公式计算由于忽略了入口射流角的变化及其出口处的动量,得到的稳态液动力误差较大,且方向始终指向阀口打开的方向。  相似文献   

15.
针对工程机械用多路阀阀口压损大、流速高,极易出现阀芯冲蚀磨损的问题,以某型号工程机械多路阀为例,设计不同组合形式的节流槽,研究多路阀阀口节流槽结构形式对阀口流阻损失及多路阀内部流场特征的影响。采用数值分析的方法研究了不同阀口节流槽形式在阀芯开启过程中阀口前后压差、流量、流速等流场特征。结果表明:阀芯采用不同组合型节流槽的流场特征明显不同,VU形节流槽较其他阀口出流线性特性更好,且具有良好的预升压效果,可进一步降低液流对阀芯的冲蚀,减小噪声、振动,保证多路阀工作的稳定性。对高压、大流量多路阀阀芯节流槽口的设计及提升多路阀综合性能具有一定的参考意义。  相似文献   

16.
针对管道在输送过程中,由流体中固态颗粒产生的冲蚀磨损导致的失效问题,通过CFD-DPM模型开展关于不同流速、颗粒直径、含砂体积比和异面管夹角对异面三通冲蚀磨损性能影响的分析。结果表明:三管交汇处的弯面是管道主要发生冲蚀磨损的位置,水平两管弯头上侧管壁处是受损最为严重的部位;在流速2~10 m/s、含砂体积比1%~9%、异面管夹角90°~150°、颗粒直径0.1~0.5 mm时,管道的最大冲蚀率随着流速增大呈指数型增长,冲蚀面积明显扩张;低流速下,含砂体积比对最大冲蚀率影响较弱,高流速下,最大冲蚀率与含砂体积比呈线性正相关;异面管夹角的增大降低了管道对固体颗粒的流动约束性,其冲蚀率呈线性减小;最大冲蚀率随颗粒直径的增大整体呈现平缓上升的趋势,大颗粒产生的冲蚀破坏相比小颗粒更为集中一些。  相似文献   

17.
液动力是滑阀和阀腔的结构设计中考虑的关键因素之一。提出了一种在阀套上开圆弧型进出口流道的方法,对进出口处的油液进行导流,以达到减小液动力的目的。同时利用FLUENT软件分析该阀内流场,并与传统的直流道滑阀相比较,然后对改进后滑阀的液动力特性和阀口流量特性分析计算。该研究对滑阀的结构优化设计有一定的参考意义。  相似文献   

18.
针对掘进机用螺纹插装式平衡阀易产生低频抖动、气穴、漩涡、噪声等现象,对螺纹插装式平衡阀的内部流场特性进行了模拟仿真。主要分析了螺纹插装式平衡阀的工作原理和主阀芯的受力情况,建立了主阀芯的数学模型;建立了螺纹插装式平衡阀的主阀二维几何模型,利用FLUENT软件模拟其内部流场特性,寻找出低压区、高速区和漩涡区。结果表明:较大的锥角角度,可以减小节流口出口的低压区域,可以减少气蚀现象的发生,也会使阀芯侧面的漩涡区域变大,易使阀芯产生抖动;较小的开口度,会减小节流口出口处的负压区域,增大节流口出口漩涡区域,减小阀芯侧面的漩涡区域,减少和避免气蚀和低频抖动现象发生,也会加大油液对阀芯锥面的冲击。  相似文献   

19.
冲蚀磨损是井控节流阀正常工作下的主要失效形式,为了延长其使用寿命,减小其冲蚀磨损而设计了一种防刺短节装置。但该装置对节流阀流量特性的影响规律尚不清楚,为了对其现场应用提供理论参考,采用三维流场分析的方法,对其流场进行了研究。结果表明,防刺短节对节流阀的压降、流阻系数和流量系数影响不明显,不会对节流阀的现场操作带来影响。安装防刺短节仍然要避免节流阀在较小开度下长时间工作。针对楔形节流阀阀瓣与阀座之间无冲击的特点,提出了阀瓣采用陶瓷材料的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号