首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the main problems in the Ultra High Voltage(UHV) transmission project is to choose the external insulation distance,which requires a deep understanding of the long air gap discharge mechanism.The leader-streamer propagation is one of most important stages in long air gap discharge.In the conductor-tower lattice configuration,we have measured the voltage,the current on the high voltage side and the electric field in the gap.While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape,the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment.Besides,it is found that the leader velocity,width and injected charge for the branch type streamer are greater than those of a diffuse type.We propose that the phenomenon results from the high humidity,which was 15.5-16.5 g/m~3 in our experiment.  相似文献   

2.
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 10~(13) cm~(-3), the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.  相似文献   

3.
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.  相似文献   

4.
Atmospheric air discharge above the surface of water is an effective method for water treatment.The leakage current and Joule heating of water are reduced by the air gap,which raises the energy efficiency of the water treatment.However,the application of this kind of discharge is limited by a pair of conflicting factors:the chemical efficiency grows as the discharge gap distance decreases,while the spark breakdown voltage decreases as the gap distance decreases.To raise the spark breakdown voltage and the chemical efficiency of atmospheric pressure water surface discharge,both the high-voltage electrode and the ground electrode are suspended above the water surface to form an electrode-water-electrode discharge system.For this system,there are two potential discharge directions:from one electrode to another directly,and from the electrodes to the water surface.The first step in utilizing the electrode-water-electrode discharge is to find out the discharge direction transition criterion.In this paper,the discharge direction transition criterions of spark discharge and streamer discharge are presented.By comparing the discharge characteristics and the chemical efficiencies,the discharge propagating from the electrodes to the water surface is proved to be more suitable for water treatment than that propagating directly between the electrodes.  相似文献   

5.
In this paper, an efficient boundary condition is applied to solve the photoionization rate, and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure. The results show that the new boundary condition improves the calculation accuracy, but the influence of photoionization on the streamer discharge process is not obvious. The discharge current in the development of streamer discharge is defined, and the corresponding expression of the positive and negative streamer discharge current is given. The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced. In the process of discharge, only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure, and the trend of the other parameters is basically the same as that described in the previous paper. The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure, which has certain significance for the development of aviation and high voltage engineering.  相似文献   

6.
When a wind turbine is struck by lightning,its blades are usually rotating.The effect of blade rotation on a turbine's ability to trigger a lightning strike is unclear.Therefore,an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary.A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50%discharge voltage.Lightning discharge tests of a 1:30 scale wind turbine model with 2,4,and 6 m air gaps were performed and the discharge process was observed.The experimental results demonstrated that when a 2 m air gap was used,the breakdown voltage increased as the blade speed was increased,but when the gap length was 4 m or longer,the trend was reversed and the breakdown voltage decreased.The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region,promotes upward leader development on the blade tip,and decreases the breakdown voltage.Thus,the blade rotation of a wind turbine increases its ability to trigger lightning strikes.  相似文献   

7.
Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.  相似文献   

8.
In this paper, the experiments on self quenching streamer (SQS) discharge in single wire and multi-wire chambers are performed, and a possible Interpretation of the SQS mechanism is proposed on the basis of analyzing the previous experimental results. According to this model, the excited atoms or molecules created in the latent track and subsequent avalanches play an important role. They form the main photo electron source. The interaction between them is also possibly a source of ionizing photons. Thus, a formula that describes the streamer transition and streamer charge is deduced. A comparison between theory and experiments is made. It is indicated that whether the streamer transition occurs or not, the absorption and radiation characteristics of the atoms or molecules of gases in the mixture is the decisive factor, and as a result of the difference in those characteristics, the different operating modes appear  相似文献   

9.
This paper presents an experimental investigation into the runaway electron spectrum with a gas diode composed of a rough spherical cathode and plane anode under the excitation of a nanosecond-pulse generator in atmospheric air. The runaway electron beams are measured by a collector covered with aluminum foil with a thickness from 0 μm(mesh grid) to 50 μm. The energy spectrum is calculated by an improved Tikhonov regularization called the maximum entropy method. The experimental results show that the transition state of the discharge consisted of multiple streamer channels stretched from the cathode with glow-like plasma uniformly distributed over the anode. The number of runaway electrons measured by the collector is in the order of 1010 in atmospheric pressure air with a gap spacing of 5 mm and applied voltages of70–130 kV. The cathode with a rough surface creates a more inhomogeneous electric field and larger emission site for the runaway electrons around the cathode, providing conditions for the coexistence of filamentary streamer and diffuse discharge. The reconstructed spectra show that the energy distribution of the runaway electrons presents a single-peak profile with energies from eU_m/2–2 eU_m/3(U_m is maximal voltage across the gap).  相似文献   

10.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

11.
In this paper, the interactions between two dielectric barrier discharge(DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise.The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.  相似文献   

12.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

13.
The effect of air pressure (12.5, 25, 50, and 100 kPa) on the generation of runaway electron beams in a non-uniform electric field when applying voltage pulses (≈35 kV) with a rise time of ≈200 ns has been studied. The results show that the discharge has various stages: streamer, diffuse, and spark. Initially, a wide streamer develops in the gap and a diffuse discharge is formed. A spark is formed ≈100 ns after the breakdown. The current pulse of a supershort avalanche electron beam (SAEB) was measured with a collector at various pressures of air. Experiments show that there are two modes of generation of runaway electrons. At an air pressure of 25–100 kPa, a single SAEB current pulse with a full width at half-maximum (FWHM) of 120–140 ps is observed. At the air pressure of 12.5 kPa, two current pulses of the electron beam are observed. FWHM of the first and second current pulses are ≈140 ps and ≈300 ps, respectively. The current pulse amplitude of the second electron beam is higher than that of the first one, but the electron energy is less.  相似文献   

14.
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.  相似文献   

15.
The mechanisms of streamer generation and propagation in double-sided pulsed surface dielectric barrier discharge (SDBD) on both sides have been analyzed and investigated by experiment and numerical simulation. The fully exposed asymmetric SDBD has two discharge processes located on the high voltage electrode (HVE) side and the ground electrode (GE) side. Discharge images of the HVE side and GE side are taken by a digital camera under continuous pulse and ICCD (Intensified Charge Coupled Device) is utilized to diagnose the generation and propagation of streamers in single pulse discharge. In order to understand the physical mechanisms of streamer evolution more deeply, we establish a 2D simulation model and analyze it from the aspects of electron density, ion density, reduced electric field and electron impact ionization source term. The results show that the primary and secondary discharges on the HVE side and the GE side of the double-sided SDBD are composed of positive streamer and negative streamer, respectively. On the HVE side, the accumulation of positive charges on the dielectric surface causes the direction of the electric field to reverse, which is the principal factor for the polarity reversal of the streamer. On the GE side, both the negative charges accumulated on the dielectric surface and the falling voltage are the key factors for the streamer polarity switch.  相似文献   

16.
17.
Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.  相似文献   

18.
In the present study,a combination of pulsed discharge plasma and TiO_2(plasma/TiO_2)has been developed in order to study the activity of TiO_2by varying the discharge conditions of pulsed voltage,discharge mode,air flow rate and solution conductivity.Phenol was used as the chemical probe to characterize the activity of TiO_2in a pulsed discharge system.The experimental results showed that the phenol removal efficiency could be improved by about 10%by increasing the applied voltage.The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode,followed by the spark–streamer mode and finally the streamer mode.In the plasma/TiO_2system,the highest catalytic effect of TiO_2was observed in the spark–streamer discharge mode,which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode,such as ultraviolet light,O_3,H_2O_2,pyrolysis,shockwaves and high-energy electrons.Meanwhile,the optimal flow rate and conductivity were 0.05 m~3l~(-1)and 10μS cm~(-1),respectively.The main phenolic intermediates were hydroquinone,catechol,and p-benzoquinone during the discharge treatment process.A different phenol degradation pathway was observed in the plasma/TiO_2system as compared to plasma alone.Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO_2surface.The effective decomposition of phenol constant(D_e)increased from 74.11%to 79.16%when TiO_2was added,indicating that higher phenol mineralization was achieved in the plasma/TiO_2system.  相似文献   

19.
The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)nanomaterial Ti3C2Tx(Tx=-F,-O and/or-OH)on regulating the electrical discharge characteristics.The field emission and weak bound state property of Ti3C2Tx can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD.The electron avalanche development for the uneven electrode structure is calculated,and the discharge mode transition is modeled.The comparative analyses of discharge phenomena validate the regulation of Ti3C2Tx on the discharge characteristics of DBD.The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited.The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature.This is the first exploration of Ti3C2Tx on the regulation of electrical discharge characteristics as far as we know.This work proves the feasibility of Ti3C2Tx as a source of seed electrons to form homogeneous DBD,establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma.  相似文献   

20.
The transition from a spark discharge to a constricted glow discharge in atmospheric air was studied with a capacitor coupled pin-to-water plasma reactor. The reason of the transition is considered to be of various factors, namely the change of the air gap due to the polarization of water molecules by the electric field, the feedback effect of the capacitors, and the ion trapping mechanism. The effects of the frequency of the power supply, inter-electrode gap, and coupled capacitance on the discharge transition were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号