共查询到18条相似文献,搜索用时 88 毫秒
1.
2.
3.
戚晓利叶绪丹蔡江林郑近德潘紫微张兴权 《振动与冲击》2018,(23):133-140
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 相似文献
4.
针对变分模态分解(Variational Mode Decomposition,VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function,IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该方法首先对原始故障信号进行变分模态分解,通过信息熵最小值原则对其参数进行优化,获得既定的若干IMF分量;在优化参数时获得信息熵最小值所在的IMF,选取其为有效IMF分量进行包络解调分析,提取轴承故障特征频率。通过轴承仿真信号和实际数据分析,表明该方法能够提取滚动轴承早期故障信号的微弱特征,并实现故障的准确判别。 相似文献
5.
频率相近信号分离是故障诊断的难点问题。变分模态分解(VMD)作为一种新的信号时频分析方法,对频率相近信号具有较高的分辨率,能够实现频率相近信号的分离。VMD分解时先指定分解层数,层数选取的优劣将直接影响分解效果,过分解时容易产生虚假频率成分,反之,欠分解则容易丢失有用频率成分。基于此,提出一种基于变分模态分解和奇异值分解相结合的相近频率信号分离方法。首先选择适当的分解层数对信号进行VMD过分解,然后对分解得到的分量进行奇异值分解,通过奇异值分解检测并剔除虚假信号成分,从而实现频率相近信号的有效分离。利用仿真信号和滚动轴承故障信号证明了该方法的有效性和可行性。 相似文献
6.
7.
针对变分模态分解中模态个数的设定会对分解结果产生重要影响的问题,提出一种求取最优分解层数的方法,该方法以瞬时频率的幅值特性为依据,通过分析变分模态分解过程中,各分量最大幅值之间的关系来确定最佳分解参数;均方根熵可以反映不同振动信号的能量值,以信号均方根熵为故障特征参量,通过优化支持向量机建立故障分类模型,实现故障模式分类。将基于最大幅值变分模态分解和均方根熵的故障诊断方法应用于滚动轴承实测信号中,实验结果表明基于最大幅值变分模态分解和均方根熵的方法能够有效识别滚动轴承运行状态,识别准确率高达98.75%。 相似文献
8.
介绍了一种自适应信号分解新方法——变分模态分解(Variational mode decomposition,VMD),并且针对滚动轴承早期故障识别困难这一问题,提出了基于VMD的诊断方法。首先通过基于分数高斯噪声的数值模拟试验对VMD方法的等效滤波特性进行研究,验证了其类似于小波包分析的频域剖分特性,继而分析了惩罚因子及分量个数的设置对VMD方法滤波特性的影响。为了在轴承故障检测过程中,减少人为主观选择影响参数存在的弊端,提出了基于包络谱特征因子(Feature factor of envelope spectrum,EFF)的影响参数自动搜寻策略,最后通过仿真信号及试验信号对所述方法进行验证。分析结果表明:该方法能够有效提取轴承早期故障信号中的微弱特征信息,实现故障类型的准确判别。 相似文献
9.
振动筛属于振动机械设备中的筛分设备,其结构特点与运行原理与一般的旋转机械有很大不同,因此提取出的振动信号同从旋转机械提取出的振动信号也同样有较大区别,主要体现在信号中不仅存在大量背景噪声,而且成分也较为复杂。对于此类信号,模态分解算法是个行之有效的方法,模态分解算法在去除大量高频噪声的同时,还能将振动信号分解成一系列具有单一成分的模态分量,从而能更好发现振动信号的物理意义。基于此,引入一种新的故障诊断方法,首先利用变分模态分解将故障信号分解为若干个窄带模态分量,然后根据K-L散度值选定最佳的分量,最后进行包络运算得出故障频率。通过仿真模拟实验与振动筛轴承故障诊断的实际应用,并与之前的经典模态分解算法——经验模态分解和集成经验模态分解进行对比,发现该算法更具有优越性和实用性。 相似文献
10.
11.
12.
针对水泵电机轴承故障振动信号噪声大和非平稳性的特点,提出了基于经验模态分解的诊断方法;通过对原始信号进行经验模态分解,得到包含故障特征的固有模态分量,从而可以提取出故障频率.该方法应用于外圈、内圈和滚动体故障诊断,取得了很好效果. 相似文献
13.
14.
15.
16.
17.
提出了基于变分模态分解(VMD)的高阶奇异谱熵的特征提取方法,并应用在滚动轴承故障诊断中。首先,使用4阶累积量切片代替奇异谱熵分析(SSEA)的协方差矩阵,引入VMD分解实现方法多尺度化,提出信号多分辨高阶奇异谱熵分析(M-HSSEA)方法;通过信号分析,VMD解决了模态混叠的问题,且能够实现信号滤波,同时该方法提取的熵特征向量增强了相空间重构参数鲁棒性;通过和小波奇异谱提取特征的方法对比,结果表明所提出的方法在克服频率混叠现象,提取的特征点总体离散度小等方面更具优势;最后,结合深度信念网络分类器实现了对故障的分类,实验结果验证了所提方法的有效性和可行性。 相似文献
18.
针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动信号进行预处理,剔除谐波干扰;其次,利用经典K-奇异值分解算法和预处理信号构造超完备字典;然后,利用K-均值聚类算法对字典中的原子进行筛选;最后,利用正交匹配追踪算法实现冲击故障特征的稀疏表示。实验分析和工程应用验证了所提方法的有效性和实用性。 相似文献