首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inlet ionization is a new approach for ionizing both small and large molecules in solids or liquid solvents with high sensitivity. The utility of solvent based inlet ionization mass spectrometry (MS) as a method for analysis of volatile and nonvolatile compounds eluting from a liquid chromatography (LC) column is demonstrated. This new LC/MS approach uses reverse phase solvent systems common to electrospray ionization MS. The first LC/MS analyses using this novel approach produced sharp chromatographic peaks and good quality full mass range mass spectra for over 25 peptides from injection of only 1 pmol of a tryptic digest of bovine serum albumin using an eluent flow rate of 55 μL min(-1). Similarly, full acquisition LC/MS/MS of the MH(+) ion of the drug clozapine, using the same solvent flow rate, produced a signal-to-noise ratio of 54 for the major fragment ion with injection of only 1 μL of a 2 ppb solution. LC/MS results were acquired on two different manufacturer's mass spectrometers using a Waters Corporation NanoAcquity liquid chromatograph.  相似文献   

2.
Wen B  Ma L  Nelson SD  Zhu M 《Analytical chemistry》2008,80(5):1788-1799
A highly sensitive and efficient method has been developed for detection and characterization of glutathione (gamma-glutamyl-cysteinylglycine, GSH)-trapped reactive metabolites using a negative precursor ion (PI) as the survey scan to trigger the acquisition of positive enhanced product ion (EPI) spectra on a triple quadrupole linear ion trap mass spectrometer. The negative precursor ion scan step was carried out monitoring the anion at m/z 272, corresponding to deprotonated gamma-glutamyl-dehydroalanyl-glycine originating from the glutathionyl moiety. Because of the uniqueness and abundance of the anion at m/z 272, this single survey scan exhibited broad utility in the detection of unknown GSH conjugates. Further structural characterization was achieved by analyzing positive MS2 spectra that featured rich fragments without mass cutoff and were acquired in the same liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. The effectiveness and reliability of this approach was evaluated using a number of model compounds in human liver microsomal incubations, including acetaminophen, clozapine, diclofenac, imipramine, meclofenamic acid, and ticlopidine. As a result, the PI-EPI approach revealed the presence of known adducts and, in many instances, identified additional conjugates that had not been reported previously. In comparison to the widely used neutral loss (NL) scanning analysis, this approach provided superior sensitivity and selectivity for different types of GSH conjugates. More importantly, the PI-EPI approach is suitable for high-throughput screening of reactive metabolites in the drug discovery process.  相似文献   

3.
Cai SS  Syage JA 《Analytical chemistry》2006,78(4):1191-1199
In this work, we compare the quantitative accuracy and sensitivity of analyzing lipids by atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI) LC/MS. The target analytes include free fatty acids and their esters, monoglyceride, diglyceride, and triglyceride. The results demonstrate the benefits of using LC/APPI-MS for lipid analysis. Analyses were performed on a Waters ZQ LC/MS. Normal-phase solvent systems were used due to low solubility of these compounds in aqueous reversed-phase solvent systems. By comparison, APPI offers lower detection limits, generally highest signal intensities, and the highest S/N ratio. APPI is 2-4 times more sensitive than APCI and much more sensitive than ESI without mobile-phase modifiers. APPI and APCI offer comparable linear range (i.e., 4-5 decades). ESI sensitivity is dramatically enhanced by use of mobile phase modifiers (i.e., ammonium formate or sodium acetate); however, these ESI adduct signals are less stable and either are nonlinear or have dramatically reduced linear ranges. Analysis of fish oils by APPI shows significantly enhanced target analyte intensities in comparison with APCI and ESI.  相似文献   

4.
Mixtures of inorganic ions separated by capillary electrophoresis (CE) and ion exchange chromatography (IC) are detected by mass spectrometry (MS) using an ion spray atmospheric pressure ionization source. The selectable degree of ion-adduct declustering and molecular fragmentation in the MS interface region allows the system to be operated as an elemental analyzer or as a molecular detector suitable for oxidation state determinations. Both inorganic anions and cations (including alkalis, alkaline earths, transition metals, and lanthanides) are analyzed by CE-MS. A variety of CE separation buffers are evaluated for the cation analyses (e.g., creatinine, ammonium acetate, and tris[hydroxymethyl]aminomethane). Only one of the buffers (i.e., creatinine) can be used for CE-indirect UV detection. A CE capillary permanently coated with strong anion exchange sites and a pyromellitic acid buffer (suitable for indirect UV detection) is used for the inorganic anion separations. The coated column eliminates the need for buffer modifiers to reverse the flow in the capillary, which then reduces background noise and mass spectral complexity. The separation and detection of 13 inorganic anions are also accomplished by IC using an anion exchange column with a carbonate-bicarbonate mobile phase, on-line suppressed conductivity detection, and mass spectrometric detection.  相似文献   

5.
Sonic spray (SS) ionization is a relatively novel atmospheric pressure ionization technique for LC/MS, based on the principle of "spray ionization", which only recently became commercially available. In this paper, we evaluate the performance of this ion source as an interface for LC/MS in comparison with the more traditional and better studied pneumatically assisted electrospray or ion spray (IS). The effect of organic modifiers, volatile acids, and buffer systems in the LC eluent on the ionization efficiency of both interfaces is described and some possible explanations for the observed phenomena are highlighted. We could conclude that the presence of organic solvents gradually increased the ionization efficiency for IS and SS, while volatile acids or buffers gave a significant signal suppression. Furthermore, we present the application of the sonic spray interface to a fast LC/MS analysis, for the simultaneous determination of the seven prime opium alkaloids in heroin impurity profiling. Chromatographic separation is performed in 5 min on a monolithic silica column (Chromolith Performance) with a gradient elution system and an optimized flow of 5 mL/min. By means of a postcolumn split of approximately 1/20, a coupling between the fast LC system and the mass spectrometer is made. The method is validated and successfully applied to the analysis of real-time seized heroin street samples.  相似文献   

6.
Modifications to a thermospray vaporizer probe and ion source have been made that enhance ion evaporation resulting in increased sample ion current. These modifications include restricting the thermospray vaporizer exit orifice and the addition of a needle-tip repeller electrode to the thermospray ion source. The interaction and effect of probe-tip size, repeller voltage, and flow rate on sulfonated azo dye detection are reported. An increase in signal response for sulfonated azo dyes was observed. An efficient chromatographic separation procedure for sulfonated azo dyes, which is compatible with thermospray mass spectrometric detection, is also presented. Five disulfonated azo dyes were separated and detected by using selected ion monitoring. Mass spectra of disulfonated dyes show a number of molecular ions and adduct ions that provide unequivocal molecular weight information.  相似文献   

7.
Direct analysis in real time for reaction monitoring in drug discovery   总被引:2,自引:0,他引:2  
Direct analysis in real time (DART) is a novel ionization technique that provides for the rapid ionization of small molecules under ambient conditions. In this study, several commercially available drugs as well as actual compounds from drug discovery research were examined by LC/UV/ESI-MS and DART interfaced to a quadrupole mass spectrometer. For most compounds, the molecular ions observed by ESI-MS were observed by DART/MS. DART/MS was also studied as a means to quickly monitor synthetic organic reactions and to obtain nearly instantaneous molecular weight confirmations of final products in drug discovery. For simple, synthetic organic transformations, the trends in the intensities of the mass spectral signals for the reactant and product obtained by DART/MS scaled closely with those of the diode array or the total ion chromatogram obtained by LC/UV/ESI-MS. In summary, DART is a new tool that complements electrospray ionization for the rapid ionization and subsequent mass spectral analysis of compounds in drug discovery.  相似文献   

8.
Enhanced charging, or supercharging, of analytes in electrospray ionization mass spectrometry (ESI MS) facilitates high resolution MS by reducing an ion mass-to-charge (m/z) ratio, increasing tandem mass spectrometry (MS/MS) efficiency. ESI MS supercharging is usually achieved by adding a supercharging reagent to the electrospray solution. Addition of these supercharging reagents to the mobile phase in liquid chromatography (LC)-MS/MS increases the average charge of enzymatically derived peptides and improves peptide and protein identification in large-scale bottom-up proteomics applications but disrupts chromatographic separation. Here, we demonstrate the average charge state of selected peptides and proteins increases by introducing the supercharging reagents directly into the ESI Taylor cone (in-spray supercharging) using a dual-sprayer ESI microchip. The results are comparable to those obtained by the addition of supercharging reagents directly into the analyte solution or LC mobile phase. Therefore, supercharging reaction can be accomplished on a time-scale of ion liberation from a droplet in the ESI ion source.  相似文献   

9.
The formation of multiply charged molecular ions via the field-assisted ion evaporation mechanism during electrospray ionization enables the use of an atmospheric pressure ionization quadrupole mass spectrometer system for characterizing biologically important peptides. The straightforward implementation of high-performance liquid chromatography (HPLC) into this new strategy to determine the molecular weight of tryptic peptides via the pneumatically assisted electrospray (ion spray) interface is presented. Examples utilizing both microbore (1.0 mm) and standard bore (4.6 mm) inside diameter columns are shown for the LC/MS molecular weight determination of tryptic peptides in methionyl-human growth hormone (met-hGH). Injected levels from 50 to 75 pmol of tryptic digest onto 1 mm i.d. HPLC columns provided full-scan LC/MS or LC/MS/MS results without postcolumn splitting of the effluent. When standard 4.6 mm i.d. HPLC columns were used, a 20:1 postcolumn split was utilized, which required from 1 to 5 nmol of injected tryptic digest for full-scan LC/MS or LC/MS/MS results. Collision-induced dissociation (CID) mass spectra resulting from either "infusion" or on-line LC/MS/MS analysis of the abundant doubly charged ions that predominate for tryptic peptides under electrospray conditions provided structurally useful sequence information for met-hGH and human hemoglobin tryptic digests. The slower mass spectrometer scan rate used during infusion of sample provides more accurate mass assignments than on-line LC/MS or LC/MS/MS, but the latter on-line experiments preclude ambiguities caused by matrix or component interferences. However, in some instances very weak CID product ions preclude complete tryptic peptide structural characterization based upon the CID data alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Primary protein sequences were determined for both peptides and enzymatically digested proteins by rapid linked-scan (B/E) liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) at the low-picomole level (10-50 pmol). During the course of a single LC/MS/MS analysis, we demonstrated that it is possible to generate interpretable collision-induced dissociation spectra of the eluting proteolytic peptides. Molecular weights of tryptic peptides were established by using 1/10 of the protein digest by operating in the capillary LC/frit-FABMS mode. Peptides exhibiting the strongest MH+ ions were then selected for subsequent LC/MS/MS analysis (typically 1/5 of the remaining protein digest). Elution times for each chromatographic peak were generally greater than 30 s. It was therefore possible to obtain a minimum of six B/E fast linked-scan spectra during the course of elution of each peptide component. Typically, B/E linked scans of the greatest ion abundance (obtained at the chromatographic peak maximum) were averaged to enhance the signal/noise ratio at these low-picomole levels. Unit resolution was observed for product ions below m/z 1000. Rapid linked scanning by LC/frit-FABMS/MS provided mass assignments for product ions within 0.2-0.3 amu of theoretical values. Side-chain fragment ions (wn and dn) were also observed, which allowed for the differentiation of isobaric amino acids (e.g., leucine and isoleucine). Examples of the application of this fast linked-scan technique to LC/MS/MS are presented for complex mixtures of unknown peptides and the tryptic digestion of phosphorylated beta-casein.  相似文献   

11.
Fulvic acid (FA) is a heterogeneous mixture of organic macromolecules found in the waters, soils, and sediments of the earth's surface. The ability of electrospray ionization (ESI) to effectively transfer large ions from the solution phase to the gas phase and the coupling of ESI to the high-mass-resolution capabilities of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provide a potential method for the mass spectrometric analysis of FA. Positive- and negative-ion ESI FT-ICR MS analyses of four reference International Humic Substances Society FAs were performed. The spray solution composition was found to have a dramatic effect on the ion distributions, with high-mass aggregates (m/z approximately 2000-4000) being formed in less polar spray solutions. Positive-ion spectra for each FA obtained under optimum conditions resulted in number-average molecular weights ranging from 1700 to 1900. The mass spectra were extremely complex, with ion distributions on the order of m/z approximately 500-3000. The presence of more than one ion at each nominal mass was routinely observed. Negative-ion ESI analysis of the FA samples resulted in the observation of multiply charged ions whose distributions could be affected by the acidification of the spray solution. Solution parameters which have been reported to affect molecular weight distributions of FA such as pH, ionic strength, and concentration of multivalent cations were found to have little or no effect on the observed m/z distributions.  相似文献   

12.
This study describes the application of liquid chromatography/mass spectrometry (LC/MS) methods for distinguishing between aliphatic and aromatic hydroxylations and between hydroxylations and N-oxidations. Hydroxylations and N-oxidations are common biotransformation reactions of drugs. Electrospray (ESI) and atmospheric pressure chemical ionization (APCI) were used to generate ions from liquid chromatographic effluents. ESI-MS, ESI-MS/MS, APCI-MS, and APCI-MS/MS experiments were performed on several metabolites and derivatives of loratadine (a long-acting and nonsedating tricyclic antihistamine) using an ion trap mass spectrometer (LCQ) and a triple-quadrupole mass spectrometer (TSQ). The observations are as follows: (1) LC/ESI-MS produced predominantly [M + H]+ ions with minor fragmentation. (2) LC/ESI-MS/MS data, however, showed a predominant loss of water from metabolites with aliphatic hydroxylation while the loss of water was not favored when hydroxylation was phenolic. N-Oxides (aromatic and aliphatic) showed only a small amount of water loss in the MS/MS spectra. (3) Under LC/APCI-MS conditions, aliphatic hydroxylation could be readily distinguished from aromatic hydroxylation based on the extent of water loss. In addition, N-oxides produced distinct [M + H - O]+ ions. These [M + H - O]+ ions were not produced in the APCI-MS spectra of hydroxylated metabolites. (4) Similar to the ESI-MS/MS spectra, the APCI-MS/MS spectra from the (M + H)+ ions of N-oxides yielded a small amount of water loss but no [M + H - O]+ ions. These results indicate that LC/APCI-MS can be used to distinguish between hydroxylated metabolites and N-oxides.  相似文献   

13.
We here describe the online liquid chromatography (LC) electrospray ionization mass spectrometry (MS) of underivatized glycans using a nanoscale normal-phase amide column at a flow rate of 300 nL/min. Retention on the amide column is based on polar interactions of the oligosaccharide hydroxyl groups with the stationary phase, and thus, the retention time predictably increases with elongation of the oligosaccharide chain. The system is characterized by its high chromatographic resolution, which routinely allows the separation of isobaric structures. Separation of oligosaccharide mixtures over a 1-h range permits the detailed characterization of the different species by multiple ion selection and fragmentation steps using ion trap MS. The here presented miniaturization of the online-LC system to the nanoscale in combination with ion trap MS allows the detection of oligosaccharide species in a mixture at low-femtomole sensitivity. Online normal-phase nano-LC-MS of complex oligosaccharide mixtures further facilitates the sensitive and detailed structural analysis of oligosaccharides by overcoming the need for cumbersome and time-consuming derivatization procedures such as reductive amination for labeling with hydrophobic fluorophores or labeling with tritium. The method should be useful for the sensitive and quick analysis of glycosylation patterns and individual oligosaccharides from biotechnologically produced glycoproteins as well as scarcely available biological samples.  相似文献   

14.
A sensitive and specific method for the determination and quantitation of (despropionyl) bezitramide in postmortem samples using liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is presented. The method is the result from a simple methodological transfer of a liquid chromatographic method with fluorescence detection (LC-FL) previously developed in our laboratory. A liquid-liquid back-extraction procedure using n-hexane isoamyl alcohol (93:7, v/v) as the extraction solvent is performed for a basic sample cleanup. N-Methyldespropionyl bezitramide is used as the internal standard. Chromatographic separation of the analytes of interest is achieved on a Hypersil ODS 5-micron column, using a 80:20 (v/v) mixture of 1.0 mM ammonium acetate and methanol/acetonitrile (50:50, v/v) and 1.0 mM ammonium acetate as the mobile phase. To obtain as high a sensitivity and selectivity as possible, a selected reaction-monitoring mass spectrometric technique is applied. In addition, low-energy collisional-activated dissociation (CAD) product ion spectra are recorded for a few samples. Calibration graphs are prepared for blood and urine, and good linearity is achieved over a concentration range of 1-150 ng/mL. The intra- and interassay coefficients of variation (CV%) for the analysis of quality control samples at 10 and 50 ng/mL concentration levels do not exceed 10.2% and percent of targets are within 12.1%. Postmortem samples (blood, urine, stomach contents, bile, liver, and kidney) from three fatalities, all suspected victims of drug overdoses, are analyzed, and the results are reported. The results obtained with LC-ESI-MS/MS are in close agreement with those obtained using the LC-FL method. Moreover, the isolates' identity and structure are confirmed by the CAD product ion spectra, thus allowing to make unequivocal conclusions about the prior intake of bezitramide by the three subjects.  相似文献   

15.
Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.  相似文献   

16.
Mass spectrometry-based metabolomics is the comprehensive study of naturally occurring small molecules collectively known as the metabolome. Given the vast structural diversity and chemical properties of endogenous metabolites, biological extraction and chromatography methods bias the number, property, and concentration of metabolites detected by mass spectrometry and creates a challenge for global untargeted studies. In this work, we used Escherichia coli bacterial cells to explore the influence of solvent polarity, temperature, and pH in extracting polar and nonpolar metabolites simultaneously. In addition, we explored chromatographic conditions involving different stationary and mobile phases that optimize the separation and ionization of endogenous metabolite extracts as well as a mixture of synthetic standards. Our results reveal that hot polar solvents are the most efficient in extracting both hydrophilic and hydrophobic metabolites simultaneously. In addition, ammonium fluoride in the mobile phase substantially improved ionization efficiency in negative electrospray ionization mode by an average increase in signal intensity of 5.7 and over a 2-fold increase in the total number of features detected. The improvement in sensitivity with ammonium fluoride resulted in 3.5 times as many metabolite hits in databases compared to ammonium acetate or formic acid enriched mobile phases and allowed for the identification of unique metabolites involved in fundamental cellular pathways.  相似文献   

17.
The hyphenation of gas chromatography and mass spectrometry (GC/MS) revolutionized organic analysis. In GC/MS coupling, usually electron impact ionization is applied, and molecules are identified by their fragment pattern. Although mass spectrometry in principle is a separation method, it is used predominantly as a spectrometric technique. However, if soft (i.e., fragmentation-free) ionization techniques are applied, the inherent separation character of MS is emphasized, which has similarities to a GC boiling point separation. By combining polar column GC separation and fast soft ionization time-of-flight mass spectrometry technology, a comprehensive separation of complex petrochemical samples can be obtained (GC x MS approach). Compounds of comparable physical-chemical properties are characteristically grouped together in a two-dimensional retention time-m/z representation. This resembles the separation characteristics of comprehensive two-dimensional gas chromatography (GC x GC) and, thus, represents a novel multidimensional separation approach. In this work, a gas chromatograph equipped with a polar separation column was coupled to a home-built laser ionization time-of-flight mass spectrometer. Laser-based, single-photon ionization was used for universal soft ionization and resonance-enhanced multiphoton ionization for selective ionization of aromatic compounds. A novel capillary-jet inlet system was used for the coupling. Multidimensional comprehensive analysis of complex petrochemical hydrocarbon samples using gas chromatography coupled to mass spectrometry with soft and selective photo ionization sources is first demonstrated.  相似文献   

18.
A novel chemical ionization source for organic mass spectrometry is introduced. This new source uses a glow discharge in the flowing afterglow mode for the generation of excited species and ions. The direct-current gas discharge is operated in helium at atmospheric pressure; typical operating voltages and currents are around 500 V and 25 mA, respectively. The species generated by this atmospheric pressure glow discharge are mixed with ambient air to generate reagent ions (mostly ionized water clusters and NO+), which are then used for the ionization of gaseous organic compounds. A wide variety of substances, both polar and nonpolar, can be ionized. The resulting mass spectra generally show the parent molecular ion (M+ or MH+) with little or no fragmentation. Proton transfer from ionized water clusters has been identified as the main ionization pathway. However, the presence of radical molecular ions (M+) for some compounds indicates that other ionization mechanisms are also involved. The analytical capabilities of this source were evaluated with a time-of-flight mass spectrometer, and preliminary characterization shows very good stability, linearity, and sensitivity. Limits of detection in the single to tens of femtomole range are reported for selected compounds.  相似文献   

19.
Tai SS  Welch MJ 《Analytical chemistry》2004,76(4):1008-1014
Cortisol is an important diagnostic marker for the production of steroid hormones, and accurate measurements of serum cortisol are necessary for proper diagnosis of adrenal function. A candidate reference method involving isotope dilution coupled with liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been developed and critically evaluated. An isotopically labeled internal standard, cortisol-d(3), was added to serum, followed by equilibration and solid-phase and ethyl acetate extractions to prepare samples for liquid chromatography/mass spectrometry electrospray ionization (LC/MS-ESI) and liquid chromatography/tandem mass spectrometry electrospray ionization (LC/MS/MS-ESI) analyses. (M + H)(+) ions at m/z 363 and 366 for cortisol and its labeled internal standard were monitored for LC/MS. The transitions of (M + H)(+) --> [(M + H)(+) - 2H(2)O] at m/z 363 --> 327 and 366 --> 330 were monitored for LC/MS/MS. The accuracy of the measurement was evaluated by a comparison of results of this candidate reference method on lyophilized human serum reference materials for cortisol [Certified Reference Materials 192 and 193] with the certified values determined by gas chromatography/mass spectrometry reference methods and by a recovery study for the added cortisol. The results of this method for total cortisol agreed with the certified values within 1.1%. The recovery of the added cortisol ranged from 99.8% to 101.0%. This method was applied to the determination of cortisol in samples of frozen serum pools. Excellent precision was obtained with within-set CVs of 0.3%-1.5% and between-set CVs of 0.04%-0.4% for both LC/MS and LC/MS/MS analyses. The correlation coefficients of all linear regression lines ranged from 0.998 to 1.000. The detection limits (at a signal-to-noise ratio of approximately 3-5) were 10 and 15 pg for LC/MS and LC/MS/MS, respectively. This method, which demonstrates good accuracy and precision, and is free from interferences from structural analogues, qualifies as a candidate reference method and can be used as an alternative reference method to provide an accuracy base to which the routine methods can be compared.  相似文献   

20.
Organic compounds containing a variety of functional groups have been analyzed using aerosol time-of-flight mass spectrometry. Both positive and negative laser desorption/ionization mass spectra have been acquired for compounds of relevance to ambient air particulate matter, including polycyclic aromatic hydrocarbons, heterocyclic analogues, aromatic oxygenated compounds such as phenols and acids, aliphatic dicarboxylic acids, and reduced nitrogen species such as amines. In many cases, positive ion mass spectra are similar to those found in libraries for 70-eV electron impact mass spectrometry. However, formation of even-electron molecular ions due to adduct formation also plays a major role in ion formation. Negative ion mass spectra suggest that organic compounds largely disintegrate into carbon cluster fragments (C(n)- and C(n)H-). However, information about the heteroatoms present in organic molecules, especially nitrogen and oxygen, is carried dominantly by negative ion spectra, emphasizing the importance of simultaneous analysis of positive and negative ions in atmospheric samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号